mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-16 14:57:05 +01:00
377 lines
12 KiB
C++
377 lines
12 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/fermion/WilsonCloverFermionImplementation.h
|
|
|
|
Copyright (C) 2017 - 2022
|
|
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
Author: Daniel Richtmann <daniel.richtmann@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#include <Grid/Grid.h>
|
|
#include <Grid/qcd/spin/Dirac.h>
|
|
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h>
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
template<class Impl>
|
|
WilsonCloverFermion<Impl>::WilsonCloverFermion(GaugeField& _Umu,
|
|
GridCartesian& Fgrid,
|
|
GridRedBlackCartesian& Hgrid,
|
|
const RealD _mass,
|
|
const RealD _csw_r,
|
|
const RealD _csw_t,
|
|
const WilsonAnisotropyCoefficients& clover_anisotropy,
|
|
const ImplParams& impl_p)
|
|
: WilsonFermion<Impl>(_Umu, Fgrid, Hgrid, _mass, impl_p, clover_anisotropy)
|
|
, CloverTerm(&Fgrid)
|
|
, CloverTermInv(&Fgrid)
|
|
, CloverTermEven(&Hgrid)
|
|
, CloverTermOdd(&Hgrid)
|
|
, CloverTermInvEven(&Hgrid)
|
|
, CloverTermInvOdd(&Hgrid)
|
|
, CloverTermDagEven(&Hgrid)
|
|
, CloverTermDagOdd(&Hgrid)
|
|
, CloverTermInvDagEven(&Hgrid)
|
|
, CloverTermInvDagOdd(&Hgrid) {
|
|
assert(Nd == 4); // require 4 dimensions
|
|
|
|
if(clover_anisotropy.isAnisotropic) {
|
|
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
|
|
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
|
|
} else {
|
|
csw_r = _csw_r * 0.5;
|
|
diag_mass = 4.0 + _mass;
|
|
}
|
|
csw_t = _csw_t * 0.5;
|
|
|
|
if(csw_r == 0)
|
|
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
|
|
if(csw_t == 0)
|
|
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
|
|
|
|
ImportGauge(_Umu);
|
|
}
|
|
|
|
// *NOT* EO
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
|
|
{
|
|
FermionField temp(out.Grid());
|
|
|
|
// Wilson term
|
|
out.Checkerboard() = in.Checkerboard();
|
|
this->Dhop(in, out, DaggerNo);
|
|
|
|
// Clover term
|
|
Mooee(in, temp);
|
|
|
|
out += temp;
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
|
|
{
|
|
FermionField temp(out.Grid());
|
|
|
|
// Wilson term
|
|
out.Checkerboard() = in.Checkerboard();
|
|
this->Dhop(in, out, DaggerYes);
|
|
|
|
// Clover term
|
|
MooeeDag(in, temp);
|
|
|
|
out += temp;
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
|
{
|
|
double t0 = usecond();
|
|
WilsonFermion<Impl>::ImportGauge(_Umu);
|
|
double t1 = usecond();
|
|
GridBase *grid = _Umu.Grid();
|
|
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
|
|
|
double t2 = usecond();
|
|
// Compute the field strength terms mu>nu
|
|
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
|
|
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
|
|
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
|
|
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
|
|
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
|
|
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
|
|
|
|
double t3 = usecond();
|
|
// Compute the Clover Operator acting on Colour and Spin
|
|
// multiply here by the clover coefficients for the anisotropy
|
|
CloverTerm = Helpers::fillCloverYZ(Bx) * csw_r;
|
|
CloverTerm += Helpers::fillCloverXZ(By) * csw_r;
|
|
CloverTerm += Helpers::fillCloverXY(Bz) * csw_r;
|
|
CloverTerm += Helpers::fillCloverXT(Ex) * csw_t;
|
|
CloverTerm += Helpers::fillCloverYT(Ey) * csw_t;
|
|
CloverTerm += Helpers::fillCloverZT(Ez) * csw_t;
|
|
CloverTerm += diag_mass;
|
|
|
|
double t4 = usecond();
|
|
int lvol = _Umu.Grid()->lSites();
|
|
int DimRep = Impl::Dimension;
|
|
|
|
double t5 = usecond();
|
|
{
|
|
autoView(CTv,CloverTerm,CpuRead);
|
|
autoView(CTIv,CloverTermInv,CpuWrite);
|
|
thread_for(site, lvol, {
|
|
Coordinate lcoor;
|
|
grid->LocalIndexToLocalCoor(site, lcoor);
|
|
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
|
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
|
typename SiteClover::scalar_object Qx = Zero(), Qxinv = Zero();
|
|
peekLocalSite(Qx, CTv, lcoor);
|
|
//if (csw!=0){
|
|
for (int j = 0; j < Ns; j++)
|
|
for (int k = 0; k < Ns; k++)
|
|
for (int a = 0; a < DimRep; a++)
|
|
for (int b = 0; b < DimRep; b++){
|
|
auto zz = Qx()(j, k)(a, b);
|
|
EigenCloverOp(a + j * DimRep, b + k * DimRep) = std::complex<double>(zz);
|
|
}
|
|
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
|
|
|
|
EigenInvCloverOp = EigenCloverOp.inverse();
|
|
//std::cout << EigenInvCloverOp << std::endl;
|
|
for (int j = 0; j < Ns; j++)
|
|
for (int k = 0; k < Ns; k++)
|
|
for (int a = 0; a < DimRep; a++)
|
|
for (int b = 0; b < DimRep; b++)
|
|
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
|
|
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
|
|
// }
|
|
pokeLocalSite(Qxinv, CTIv, lcoor);
|
|
});
|
|
}
|
|
|
|
double t6 = usecond();
|
|
// Separate the even and odd parts
|
|
pickCheckerboard(Even, CloverTermEven, CloverTerm);
|
|
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
|
|
|
|
pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm));
|
|
pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm));
|
|
|
|
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
|
|
pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv);
|
|
|
|
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
|
|
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
|
|
double t7 = usecond();
|
|
|
|
#if 0
|
|
std::cout << GridLogMessage << "WilsonCloverFermion::ImportGauge timings:"
|
|
<< " WilsonFermion::Importgauge = " << (t1 - t0) / 1e6
|
|
<< ", allocations = " << (t2 - t1) / 1e6
|
|
<< ", field strength = " << (t3 - t2) / 1e6
|
|
<< ", fill clover = " << (t4 - t3) / 1e6
|
|
<< ", misc = " << (t5 - t4) / 1e6
|
|
<< ", inversions = " << (t6 - t5) / 1e6
|
|
<< ", pick cbs = " << (t7 - t6) / 1e6
|
|
<< ", total = " << (t7 - t0) / 1e6
|
|
<< std::endl;
|
|
#endif
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
|
|
{
|
|
this->MooeeInternal(in, out, DaggerNo, InverseNo);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
|
|
{
|
|
this->MooeeInternal(in, out, DaggerYes, InverseNo);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
|
|
{
|
|
this->MooeeInternal(in, out, DaggerNo, InverseYes);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
|
|
{
|
|
this->MooeeInternal(in, out, DaggerYes, InverseYes);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
|
|
{
|
|
out.Checkerboard() = in.Checkerboard();
|
|
CloverField *Clover;
|
|
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
|
|
|
if (dag)
|
|
{
|
|
if (in.Grid()->_isCheckerBoarded)
|
|
{
|
|
if (in.Checkerboard() == Odd)
|
|
{
|
|
Clover = (inv) ? &CloverTermInvDagOdd : &CloverTermDagOdd;
|
|
}
|
|
else
|
|
{
|
|
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
|
|
}
|
|
Helpers::multCloverField(out, *Clover, in);
|
|
}
|
|
else
|
|
{
|
|
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
|
Helpers::multCloverField(out, *Clover, in); // don't bother with adj, hermitian anyway
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (in.Grid()->_isCheckerBoarded)
|
|
{
|
|
|
|
if (in.Checkerboard() == Odd)
|
|
{
|
|
// std::cout << "Calling clover term Odd" << std::endl;
|
|
Clover = (inv) ? &CloverTermInvOdd : &CloverTermOdd;
|
|
}
|
|
else
|
|
{
|
|
// std::cout << "Calling clover term Even" << std::endl;
|
|
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
|
|
}
|
|
Helpers::multCloverField(out, *Clover, in);
|
|
// std::cout << GridLogMessage << "*Clover.Checkerboard() " << (*Clover).Checkerboard() << std::endl;
|
|
}
|
|
else
|
|
{
|
|
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
|
Helpers::multCloverField(out, *Clover, in);
|
|
}
|
|
}
|
|
} // MooeeInternal
|
|
|
|
// Derivative parts unpreconditioned pseudofermions
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
|
{
|
|
conformable(X.Grid(), Y.Grid());
|
|
conformable(X.Grid(), force.Grid());
|
|
GaugeLinkField force_mu(force.Grid()), lambda(force.Grid());
|
|
GaugeField clover_force(force.Grid());
|
|
PropagatorField Lambda(force.Grid());
|
|
|
|
// Guido: Here we are hitting some performance issues:
|
|
// need to extract the components of the DoubledGaugeField
|
|
// for each call
|
|
// Possible solution
|
|
// Create a vector object to store them? (cons: wasting space)
|
|
std::vector<GaugeLinkField> U(Nd, this->Umu.Grid());
|
|
|
|
Impl::extractLinkField(U, this->Umu);
|
|
|
|
force = Zero();
|
|
// Derivative of the Wilson hopping term
|
|
this->DhopDeriv(force, X, Y, dag);
|
|
|
|
///////////////////////////////////////////////////////////
|
|
// Clover term derivative
|
|
///////////////////////////////////////////////////////////
|
|
Impl::outerProductImpl(Lambda, X, Y);
|
|
//std::cout << "Lambda:" << Lambda << std::endl;
|
|
|
|
Gamma::Algebra sigma[] = {
|
|
Gamma::Algebra::SigmaXY,
|
|
Gamma::Algebra::SigmaXZ,
|
|
Gamma::Algebra::SigmaXT,
|
|
Gamma::Algebra::MinusSigmaXY,
|
|
Gamma::Algebra::SigmaYZ,
|
|
Gamma::Algebra::SigmaYT,
|
|
Gamma::Algebra::MinusSigmaXZ,
|
|
Gamma::Algebra::MinusSigmaYZ,
|
|
Gamma::Algebra::SigmaZT,
|
|
Gamma::Algebra::MinusSigmaXT,
|
|
Gamma::Algebra::MinusSigmaYT,
|
|
Gamma::Algebra::MinusSigmaZT};
|
|
|
|
/*
|
|
sigma_{\mu \nu}=
|
|
| 0 sigma[0] sigma[1] sigma[2] |
|
|
| sigma[3] 0 sigma[4] sigma[5] |
|
|
| sigma[6] sigma[7] 0 sigma[8] |
|
|
| sigma[9] sigma[10] sigma[11] 0 |
|
|
*/
|
|
|
|
int count = 0;
|
|
clover_force = Zero();
|
|
for (int mu = 0; mu < 4; mu++)
|
|
{
|
|
force_mu = Zero();
|
|
for (int nu = 0; nu < 4; nu++)
|
|
{
|
|
if (mu == nu)
|
|
continue;
|
|
|
|
RealD factor;
|
|
if (nu == 4 || mu == 4)
|
|
{
|
|
factor = 2.0 * csw_t;
|
|
}
|
|
else
|
|
{
|
|
factor = 2.0 * csw_r;
|
|
}
|
|
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
|
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
|
force_mu -= factor*Helpers::Cmunu(U, lambda, mu, nu); // checked
|
|
count++;
|
|
}
|
|
|
|
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
|
}
|
|
//clover_force *= csw;
|
|
force += clover_force;
|
|
}
|
|
|
|
// Derivative parts
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
// Derivative parts
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
|
|
{
|
|
assert(0); // not implemented yet
|
|
}
|
|
|
|
NAMESPACE_END(Grid);
|