1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/tests/solver/Test_dwf_hdcr.cc

694 lines
26 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
//#include <algorithms/iterative/PrecConjugateResidual.h>
using namespace std;
using namespace Grid;
;
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
int, domaindecompose,
int, domainsize,
int, order,
int, Ls,
double, mq,
double, lo,
double, hi,
int, steps);
myclass(){};
};
myclass params;
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Fobj,class CComplex,int nbasis, class Matrix>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::siteVector siteVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseScalar CoarseScalar;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
// Constructor
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineOperator &Smooth,Matrix &SmootherMatrix)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_SmootherOperator(Smooth),
_SmootherMatrix(SmootherMatrix)
{
}
void PowerMethod(const FineField &in) {
FineField p1(in.Grid());
FineField p2(in.Grid());
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
p1=in;
for(int i=0;i<20;i++){
RealD absp1=std::sqrt(norm2(p1));
fMdagMOp.HermOp(p1,p2);// this is the G5 herm bit
// _FineOperator.Op(p1,p2);// this is the G5 herm bit
RealD absp2=std::sqrt(norm2(p2));
if(i%10==9)
std::cout<<GridLogMessage << "Power method on mdagm "<<i<<" " << absp2/absp1<<std::endl;
p1=p2*(1.0/std::sqrt(absp2));
}
}
void operator()(const FineField &in, FineField & out) {
if ( params.domaindecompose ) {
operatorSAP(in,out);
} else {
operatorCheby(in,out);
}
}
////////////////////////////////////////////////////////////////////////
// ADEF2: [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
////////////////////////////////////////////////////////////////////////
#if 1
void operatorADEF2(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
FineField tmp(in.Grid());
FineField res(in.Grid());
FineField Min(in.Grid());
// Monitor completeness of low mode space
_Aggregates.ProjectToSubspace (Csrc,in);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
_FineOperator.Op(in,tmp);// this is the G5 herm bit
fCG(fMdagMOp,tmp,Min); // solves MdagM = g5 M g5M
// Monitor completeness of low mode space
_Aggregates.ProjectToSubspace (Csrc,Min);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Completeness Min: "<<std::sqrt(norm2(out)/norm2(Min))<<std::endl;
_FineOperator.Op(Min,tmp);
tmp = in - tmp; // in - A Min
Csol=Zero();
_Aggregates.ProjectToSubspace (Csrc,tmp);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
HermOp.Op(Csol,Ctmp);
Ctmp=Ctmp-Csrc;
std::cout<<GridLogMessage<<"coarse space true residual "<<std::sqrt(norm2(Ctmp)/norm2(Csrc))<<std::endl;
_Aggregates.PromoteFromSubspace(Csol,out);
_FineOperator.Op(out,res);
res=res-tmp;
std::cout<<GridLogMessage<<"promoted sol residual "<<std::sqrt(norm2(res)/norm2(tmp))<<std::endl;
_Aggregates.ProjectToSubspace (Csrc,res);
std::cout<<GridLogMessage<<"coarse space proj of residual "<<norm2(Csrc)<<std::endl;
out = out+Min; // additive coarse space correction
// out = Min; // no additive coarse space correction
_FineOperator.Op(out,tmp);
tmp=tmp-in; // tmp is new residual
std::cout<<GridLogMessage<< " Preconditioner in " << norm2(in)<<std::endl;
std::cout<<GridLogMessage<< " Preconditioner out " << norm2(out)<<std::endl;
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
#if 1
void operatorADEF1(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=Zero();
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix,0.1);
FineField tmp(in.Grid());
FineField res(in.Grid());
FineField Qin(in.Grid());
// Monitor completeness of low mode space
// _Aggregates.ProjectToSubspace (Csrc,in);
// _Aggregates.PromoteFromSubspace(Csrc,out);
// std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
_Aggregates.ProjectToSubspace (Csrc,in);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,Qin);
// Qin=0;
_FineOperator.Op(Qin,tmp);// A Q in
tmp = in - tmp; // in - A Q in
_FineOperator.Op(tmp,res);// this is the G5 herm bit
fCG(fMdagMOp,res,out); // solves MdagM = g5 M g5M
out = out + Qin;
_FineOperator.Op(out,tmp);
tmp=tmp-in; // tmp is new residual
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
void SAP (const FineField & src,FineField & psi){
Lattice<iScalar<vInteger> > coor(src.Grid());
Lattice<iScalar<vInteger> > subset(src.Grid());
FineField r(src.Grid());
FineField zz(src.Grid()); zz=Zero();
FineField vec1(src.Grid());
FineField vec2(src.Grid());
const Integer block=params.domainsize;
subset=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu+1);
coor = div(coor,block);
subset = subset+coor;
}
subset = mod(subset,(Integer)2);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation);
RealD resid;
for(int i=0;i<params.steps;i++){
// Even domain residual
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
r= src - vec1 ;
resid = norm2(r) /norm2(src);
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
// Even domain solve
r= where(subset==(Integer)0,r,zz);
_SmootherOperator.AdjOp(r,vec1);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
psi = psi + vec2;
// Odd domain residual
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
r= src - vec1 ;
r= where(subset==(Integer)1,r,zz);
resid = norm2(r) /norm2(src);
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
// Odd domain solve
_SmootherOperator.AdjOp(r,vec1);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
psi = psi + vec2;
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
r= src - vec1 ;
resid = norm2(r) /norm2(src);
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
}
};
void SmootherTest (const FineField & in){
FineField vec1(in.Grid());
FineField vec2(in.Grid());
RealD lo[3] = { 0.5, 1.0, 2.0};
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
RealD Ni,r;
Ni = norm2(in);
for(int ilo=0;ilo<3;ilo++){
for(int ord=5;ord<50;ord*=2){
_SmootherOperator.AdjOp(in,vec1);
Chebyshev<FineField> Cheby (lo[ilo],70.0,ord,InverseApproximation);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
_FineOperator.Op(vec2,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
}
}
void operatorCheby(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=Zero();
ConjugateGradient<CoarseVector> CG(3.0e-3,100000);
// ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
FineField vec1(in.Grid());
FineField vec2(in.Grid());
// Chebyshev<FineField> Cheby (0.5,70.0,30,InverseApproximation);
// Chebyshev<FineField> ChebyAccu(0.5,70.0,30,InverseApproximation);
Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation);
Chebyshev<FineField> ChebyAccu(params.lo,params.hi,params.order,InverseApproximation);
// Cheby.JacksonSmooth();
// ChebyAccu.JacksonSmooth();
// _Aggregates.ProjectToSubspace (Csrc,in);
// _Aggregates.PromoteFromSubspace(Csrc,out);
// std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// ofstream fout("smoother");
// Cheby.csv(fout);
// V11 multigrid.
// Use a fixed chebyshev and hope hermiticity helps.
// To make a working smoother for indefinite operator
// must multiply by "Mdag" (ouch loses all low mode content)
// and apply to poly approx of (mdagm)^-1.
// so that we end up with an odd polynomial.
RealD Ni = norm2(in);
_SmootherOperator.AdjOp(in,vec1);// this is the G5 herm bit
ChebyAccu(fMdagMOp,vec1,out); // solves MdagM = g5 M g5M
std::cout<<GridLogMessage << "Smoother norm "<<norm2(out)<<std::endl;
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
RealD r = norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
_Aggregates.ProjectToSubspace (Csrc,vec1);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
// Q = Q[in - A Min]
out = out+vec1;
// Three preconditioner smoothing -- hermitian if C3 = C1
// Recompute error
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
// Reapply smoother
_SmootherOperator.Op(vec1,vec2); // this is the G5 herm bit
ChebyAccu(fMdagMOp,vec2,vec1); // solves MdagM = g5 M g5M
out =out+vec1;
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
void operatorSAP(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=Zero();
ConjugateGradient<CoarseVector> CG(1.0e-3,100000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
FineField vec1(in.Grid());
FineField vec2(in.Grid());
_Aggregates.ProjectToSubspace (Csrc,in);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// To make a working smoother for indefinite operator
// must multiply by "Mdag" (ouch loses all low mode content)
// and apply to poly approx of (mdagm)^-1.
// so that we end up with an odd polynomial.
SAP(in,out);
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
RealD r = norm2(vec1);
RealD Ni = norm2(in);
std::cout<<GridLogMessage << "SAP resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
_Aggregates.ProjectToSubspace (Csrc,vec1);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
// Q = Q[in - A Min]
out = out+vec1;
// Three preconditioner smoothing -- hermitian if C3 = C1
// Recompute error
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
// Reapply smoother
SAP(vec1,vec2);
out =out+vec2;
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r = norm2(vec1);
Ni = norm2(in);
std::cout<<GridLogMessage << "SAP resid(post) "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
XmlReader RD("params.xml");
read(RD,"params",params);
std::cout<<"Params: Order "<<params.order<<"["<<params.lo<<","<<params.hi<<"]"<< " steps "<<params.steps<<std::endl;
const int Ls=params.Ls;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
const int nbasis= 32;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
Gamma g5(Gamma::Algebra::Gamma5);
LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src;
LatticeFermion result(FGrid); result=Zero();
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid);
LatticeGaugeField UmuDD(UGrid);
LatticeColourMatrix U(UGrid);
LatticeColourMatrix zz(UGrid);
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
if ( params.domaindecompose ) {
Lattice<iScalar<vInteger> > coor(UGrid);
zz=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
U = PeekIndex<LorentzIndex>(Umu,mu);
U = where(mod(coor,params.domainsize)==(Integer)0,zz,U);
PokeIndex<LorentzIndex>(UmuDD,U,mu);
}
} else {
UmuDD = Umu;
}
// SU3::ColdConfiguration(RNG4,Umu);
// SU3::TepidConfiguration(RNG4,Umu);
// SU3::HotConfiguration(RNG4,Umu);
// Umu=Zero();
RealD mass=params.mq;
RealD M5=1.8;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR DdwfDD(UmuDD,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid,0);
// Aggregates.CreateSubspace(RNG5,HermDefOp,nbasis);
assert ( (nbasis & 0x1)==0);
int nb=nbasis/2;
std::cout<<GridLogMessage << " nbasis/2 = "<<nb<<std::endl;
Aggregates.CreateSubspace(RNG5,HermDefOp,nb);
// Aggregates.CreateSubspaceLanczos(RNG5,HermDefOp,nb);
for(int n=0;n<nb;n++){
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
std::cout<<GridLogMessage<<n<<" subspace "<<norm2(Aggregates.subspace[n+nb])<<" "<<norm2(Aggregates.subspace[n]) <<std::endl;
}
for(int n=0;n<nbasis;n++){
std::cout<<GridLogMessage << "vec["<<n<<"] = "<<norm2(Aggregates.subspace[n]) <<std::endl;
}
// for(int i=0;i<nbasis;i++){
// result = Aggregates.subspace[i];
// Aggregates.subspace[i]=result+g5*result;
// }
result=Zero();
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOpDD(DdwfDD);
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*Coarse5d);
LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing some coarse space solvers " <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
CoarseVector c_src (Coarse5d);
CoarseVector c_res (Coarse5d);
gaussian(CRNG,c_src);
c_res=Zero();
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Solving posdef-CG on coarse space "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
ConjugateGradient<CoarseVector> CG(1.0e-6,100000);
// CG(PosdefLdop,c_src,c_res);
// std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// std::cout<<GridLogMessage << "Solving indef-MCR on coarse space "<< std::endl;
// std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// HermitianLinearOperator<CoarseOperator,CoarseVector> HermIndefLdop(LDOp);
// ConjugateResidual<CoarseVector> MCR(1.0e-6,100000);
//MCR(HermIndefLdop,c_src,c_res);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR> Precon (Aggregates, LDOp,
HermIndefOp,Ddwf,
HermIndefOp,Ddwf);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR> PreconDD(Aggregates, LDOp,
HermIndefOp,Ddwf,
HermIndefOpDD,DdwfDD);
TrivialPrecon<LatticeFermion> simple;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing smoother efficacy"<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// Precon.SmootherTest(src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing DD smoother efficacy"<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// PreconDD.SmootherTest(src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing SAP smoother efficacy"<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// PreconDD.SAP(src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Unprec CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// TrivialPrecon<LatticeFermion> simple;
// ConjugateGradient<LatticeFermion> fCG(1.0e-8,100000);
// fCG(HermDefOp,src,result);
// exit(0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing GCR on indef matrix "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// PrecGeneralisedConjugateResidual<LatticeFermion> UPGCR(1.0e-8,100000,simple,8,128);
// UPGCR(HermIndefOp,src,result);
/// Get themax eval
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage <<" Applying power method to find spectral range "<<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Precon.PowerMethod(src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building a two level DDPGCR "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// PrecGeneralisedConjugateResidual<LatticeFermion> PGCRDD(1.0e-8,100000,PreconDD,8,128);
// result=Zero();
// std::cout<<GridLogMessage<<"checking norm src "<<norm2(src)<<std::endl;
// PGCRDD(HermIndefOp,src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building a two level PGCR "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
PrecGeneralisedConjugateResidual<LatticeFermion> PGCR(1.0e-8,100000,Precon,8,8);
std::cout<<GridLogMessage<<"checking norm src "<<norm2(src)<<std::endl;
result=Zero();
PGCR(HermIndefOp,src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Red Black Prec CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> pCG(1.0e-8,10000);
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=Zero();
pCG(HermOpEO,src_o,result_o);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Grid_finalize();
}