mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
224 lines
7.6 KiB
C++
224 lines
7.6 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./tests/Test_dwf_mrhs_cg.cc
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Grid/Grid.h>
|
|
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
|
|
|
using namespace std;
|
|
using namespace Grid;
|
|
using namespace Grid::QCD;
|
|
|
|
int main (int argc, char ** argv)
|
|
{
|
|
typedef typename DomainWallFermionR::FermionField FermionField;
|
|
typedef typename DomainWallFermionR::ComplexField ComplexField;
|
|
typename DomainWallFermionR::ImplParams params;
|
|
|
|
const int Ls=4;
|
|
|
|
Grid_init(&argc,&argv);
|
|
|
|
std::vector<int> latt_size = GridDefaultLatt();
|
|
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
|
std::vector<int> mpi_layout = GridDefaultMpi();
|
|
std::vector<int> mpi_split (mpi_layout.size(),1);
|
|
|
|
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
|
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
|
GridDefaultMpi());
|
|
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
|
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
|
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
|
|
|
/////////////////////////////////////////////
|
|
// Split into 1^4 mpi communicators
|
|
/////////////////////////////////////////////
|
|
|
|
for(int i=0;i<argc;i++){
|
|
if(std::string(argv[i]) == "--split"){
|
|
for(int k=0;k<mpi_layout.size();k++){
|
|
std::stringstream ss;
|
|
ss << argv[i+1+k];
|
|
ss >> mpi_split[k];
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
int nrhs = 1;
|
|
int me;
|
|
for(int i=0;i<mpi_layout.size();i++) nrhs *= (mpi_layout[i]/mpi_split[i]);
|
|
|
|
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
|
|
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
|
mpi_split,
|
|
*UGrid,me);
|
|
|
|
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
|
|
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
|
|
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
|
|
|
|
///////////////////////////////////////////////
|
|
// Set up the problem as a 4d spreadout job
|
|
///////////////////////////////////////////////
|
|
std::vector<int> seeds({1,2,3,4});
|
|
|
|
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
|
|
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
|
|
std::vector<FermionField> src(nrhs,FGrid);
|
|
std::vector<FermionField> src_chk(nrhs,FGrid);
|
|
std::vector<FermionField> result(nrhs,FGrid);
|
|
FermionField tmp(FGrid);
|
|
|
|
for(int s=0;s<nrhs;s++) result[s]=zero;
|
|
#define LEXICO_TEST
|
|
#ifdef LEXICO_TEST
|
|
{
|
|
LatticeFermion lex(FGrid); lex = zero;
|
|
LatticeFermion ftmp(FGrid);
|
|
Integer stride =10000;
|
|
double nrm;
|
|
LatticeComplex coor(FGrid);
|
|
for(int d=0;d<5;d++){
|
|
LatticeCoordinate(coor,d);
|
|
ftmp = stride;
|
|
ftmp = ftmp * coor;
|
|
lex = lex + ftmp;
|
|
stride=stride/10;
|
|
}
|
|
for(int s=0;s<nrhs;s++) {
|
|
src[s]=lex;
|
|
ftmp = 1000*1000*s;
|
|
src[s] = src[s] + ftmp;
|
|
}
|
|
}
|
|
#else
|
|
for(int s=0;s<nrhs;s++) {
|
|
random(pRNG5,src[s]);
|
|
tmp = 100.0*s;
|
|
src[s] = (src[s] * 0.1) + tmp;
|
|
std::cout << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
|
|
}
|
|
#endif
|
|
|
|
for(int n =0 ; n< nrhs ; n++) {
|
|
std::cout << " src"<<n<<"\n"<< src[n] <<std::endl;
|
|
}
|
|
|
|
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
|
|
|
|
/////////////////
|
|
// MPI only sends
|
|
/////////////////
|
|
LatticeGaugeField s_Umu(SGrid);
|
|
FermionField s_src(SFGrid);
|
|
FermionField s_tmp(SFGrid);
|
|
FermionField s_res(SFGrid);
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// split the source out using MPI instead of I/O
|
|
///////////////////////////////////////////////////////////////
|
|
Grid_split (Umu,s_Umu);
|
|
Grid_split (src,s_src);
|
|
std::cout << " split rank " <<me << " s_src "<<norm2(s_src)<<std::endl;
|
|
std::cout << " s_src\n "<< s_src <<std::endl;
|
|
|
|
#ifdef LEXICO_TEST
|
|
FermionField s_src_tmp(SFGrid);
|
|
FermionField s_src_diff(SFGrid);
|
|
{
|
|
LatticeFermion lex(SFGrid); lex = zero;
|
|
LatticeFermion ftmp(SFGrid);
|
|
Integer stride =10000;
|
|
double nrm;
|
|
LatticeComplex coor(SFGrid);
|
|
for(int d=0;d<5;d++){
|
|
LatticeCoordinate(coor,d);
|
|
ftmp = stride;
|
|
ftmp = ftmp * coor;
|
|
lex = lex + ftmp;
|
|
stride=stride/10;
|
|
}
|
|
s_src_tmp=lex;
|
|
ftmp = 1000*1000*me;
|
|
s_src_tmp = s_src_tmp + ftmp;
|
|
}
|
|
s_src_diff = s_src_tmp - s_src;
|
|
std::cout << " s_src_diff " << norm2(s_src_diff)<<std::endl;
|
|
|
|
std::cout << " s_src \n" << s_src << std::endl;
|
|
std::cout << " s_src_tmp \n" << s_src_tmp << std::endl;
|
|
std::cout << " s_src_diff \n" << s_src_diff << std::endl;
|
|
#endif
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// Set up N-solvers as trivially parallel
|
|
///////////////////////////////////////////////////////////////
|
|
RealD mass=0.01;
|
|
RealD M5=1.8;
|
|
DomainWallFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5);
|
|
DomainWallFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5);
|
|
|
|
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
|
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
|
|
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
|
|
|
|
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
|
|
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
|
|
ConjugateGradient<FermionField> CG((1.0e-2),10000);
|
|
s_res = zero;
|
|
CG(HermOp,s_src,s_res);
|
|
|
|
std::cout << " s_res norm "<<norm2(s_res)<<std::endl;
|
|
/////////////////////////////////////////////////////////////
|
|
// Report how long they all took
|
|
/////////////////////////////////////////////////////////////
|
|
std::vector<uint32_t> iterations(nrhs,0);
|
|
iterations[me] = CG.IterationsToComplete;
|
|
|
|
for(int n=0;n<nrhs;n++){
|
|
UGrid->GlobalSum(iterations[n]);
|
|
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Gather and residual check on the results
|
|
/////////////////////////////////////////////////////////////
|
|
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
|
|
Grid_unsplit(result,s_res);
|
|
|
|
|
|
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
|
|
for(int n=0;n<nrhs;n++){
|
|
std::cout << " res["<<n<<"] norm "<<norm2(result[n])<<std::endl;
|
|
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
|
|
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)/norm2(src[n])<<std::endl;
|
|
}
|
|
|
|
Grid_finalize();
|
|
}
|