mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 17:55:38 +00:00
437 lines
13 KiB
C++
437 lines
13 KiB
C++
/*
|
|
* Warning: This code illustrative only: not well tested, and not meant for production use
|
|
* without regression / tests being applied
|
|
*/
|
|
|
|
#include <Grid/Grid.h>
|
|
|
|
using namespace std;
|
|
using namespace Grid;
|
|
|
|
RealD LLscale =1.0;
|
|
RealD LCscale =1.0;
|
|
|
|
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
|
|
{
|
|
public:
|
|
INHERIT_GIMPL_TYPES(Gimpl);
|
|
|
|
GridBase *grid;
|
|
GaugeField U;
|
|
|
|
CovariantLaplacianCshift(GaugeField &_U) :
|
|
grid(_U.Grid()),
|
|
U(_U) { };
|
|
|
|
virtual GridBase *Grid(void) { return grid; };
|
|
|
|
virtual void M (const Field &in, Field &out)
|
|
{
|
|
out=Zero();
|
|
for(int mu=0;mu<Nd-1;mu++) {
|
|
GaugeLinkField Umu = PeekIndex<LorentzIndex>(U, mu); // NB: Inefficent
|
|
out = out - Gimpl::CovShiftForward(Umu,mu,in);
|
|
out = out - Gimpl::CovShiftBackward(Umu,mu,in);
|
|
out = out + 2.0*in;
|
|
}
|
|
};
|
|
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
|
|
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
|
|
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
|
|
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
|
|
};
|
|
|
|
void MakePhase(Coordinate mom,LatticeComplex &phase)
|
|
{
|
|
GridBase *grid = phase.Grid();
|
|
auto latt_size = grid->GlobalDimensions();
|
|
ComplexD ci(0.0,1.0);
|
|
phase=Zero();
|
|
|
|
LatticeComplex coor(phase.Grid());
|
|
for(int mu=0;mu<Nd;mu++){
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
LatticeCoordinate(coor,mu);
|
|
phase = phase + (TwoPiL * mom[mu]) * coor;
|
|
}
|
|
phase = exp(phase*ci);
|
|
}
|
|
|
|
void PointSource(Coordinate &coor,LatticePropagator &source)
|
|
{
|
|
// Coordinate coor({0,0,0,0});
|
|
source=Zero();
|
|
SpinColourMatrix kronecker; kronecker=1.0;
|
|
pokeSite(kronecker,source,coor);
|
|
}
|
|
void Z2WallSource(GridParallelRNG &RNG,int tslice,LatticePropagator &source)
|
|
{
|
|
GridBase *grid = source.Grid();
|
|
LatticeComplex noise(grid);
|
|
LatticeComplex zz(grid); zz=Zero();
|
|
LatticeInteger t(grid);
|
|
|
|
RealD nrm=1.0/sqrt(2);
|
|
bernoulli(RNG, noise); // 0,1 50:50
|
|
|
|
noise = (2.*noise - Complex(1,1))*nrm;
|
|
|
|
LatticeCoordinate(t,Tdir);
|
|
noise = where(t==Integer(tslice), noise, zz);
|
|
|
|
source = 1.0;
|
|
source = source*noise;
|
|
std::cout << " Z2 wall " << norm2(source) << std::endl;
|
|
}
|
|
template<class Field>
|
|
void GaussianSmear(LatticeGaugeField &U,Field &unsmeared,Field &smeared)
|
|
{
|
|
typedef CovariantLaplacianCshift <PeriodicGimplR,Field> Laplacian_t;
|
|
Laplacian_t Laplacian(U);
|
|
|
|
Integer Iterations = 40;
|
|
Real width = 2.0;
|
|
Real coeff = (width*width) / Real(4*Iterations);
|
|
|
|
Field tmp(U.Grid());
|
|
smeared=unsmeared;
|
|
// chi = (1-p^2/2N)^N kronecker
|
|
for(int n = 0; n < Iterations; ++n) {
|
|
Laplacian.M(smeared,tmp);
|
|
smeared = smeared - coeff*tmp;
|
|
std::cout << " smear iter " << n<<" " <<norm2(smeared)<<std::endl;
|
|
}
|
|
}
|
|
void GaussianSource(Coordinate &site,LatticeGaugeField &U,LatticePropagator &source)
|
|
{
|
|
LatticePropagator tmp(source.Grid());
|
|
PointSource(site,source);
|
|
std::cout << " GaussianSource Kronecker "<< norm2(source)<<std::endl;
|
|
tmp = source;
|
|
GaussianSmear(U,tmp,source);
|
|
std::cout << " GaussianSource Smeared "<< norm2(source)<<std::endl;
|
|
}
|
|
void GaussianWallSource(GridParallelRNG &RNG,int tslice,LatticeGaugeField &U,LatticePropagator &source)
|
|
{
|
|
Z2WallSource(RNG,tslice,source);
|
|
auto tmp = source;
|
|
GaussianSmear(U,tmp,source);
|
|
}
|
|
void SequentialSource(int tslice,Coordinate &mom,LatticePropagator &spectator,LatticePropagator &source)
|
|
{
|
|
assert(mom.size()==Nd);
|
|
assert(mom[Tdir] == 0);
|
|
|
|
GridBase * grid = spectator.Grid();
|
|
|
|
|
|
LatticeInteger ts(grid);
|
|
LatticeCoordinate(ts,Tdir);
|
|
source = Zero();
|
|
source = where(ts==Integer(tslice),spectator,source); // Stick in a slice of the spectator, zero everywhere else
|
|
|
|
LatticeComplex phase(grid);
|
|
MakePhase(mom,phase);
|
|
|
|
source = source *phase;
|
|
}
|
|
|
|
template<class Action>
|
|
void MasslessFreePropagator(Action &D,LatticePropagator &source,LatticePropagator &propagator)
|
|
{
|
|
GridBase *UGrid = source.Grid();
|
|
GridBase *FGrid = D.FermionGrid();
|
|
bool fiveD = true; //calculate 5d free propagator
|
|
RealD mass = D.Mass();
|
|
LatticeFermion src4 (UGrid);
|
|
LatticeFermion result4 (UGrid);
|
|
LatticeFermion result5(FGrid);
|
|
LatticeFermion src5(FGrid);
|
|
LatticePropagator prop5(FGrid);
|
|
for(int s=0;s<Nd;s++){
|
|
for(int c=0;c<Nc;c++){
|
|
|
|
PropToFerm<Action>(src4,source,s,c);
|
|
|
|
D.ImportPhysicalFermionSource(src4,src5);
|
|
D.FreePropagator(src5,result5,mass,true);
|
|
std::cout<<GridLogMessage
|
|
<<"Free 5D prop spin "<<s<<" color "<<c
|
|
<<" norm2(src5d) " <<norm2(src5)
|
|
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
|
|
|
|
D.ExportPhysicalFermionSolution(result5,result4);
|
|
|
|
FermToProp<Action>(prop5,result5,s,c);
|
|
FermToProp<Action>(propagator,result4,s,c);
|
|
}
|
|
}
|
|
|
|
LatticePropagator Vector_mu(UGrid);
|
|
LatticeComplex VV (UGrid);
|
|
std::vector<TComplex> sumVV;
|
|
Gamma::Algebra GammaV[3] = {
|
|
Gamma::Algebra::GammaX,
|
|
Gamma::Algebra::GammaY,
|
|
Gamma::Algebra::GammaZ
|
|
};
|
|
for( int mu=0;mu<3;mu++ ) {
|
|
Gamma gV(GammaV[mu]);
|
|
D.ContractConservedCurrent(prop5,prop5,Vector_mu,source,Current::Vector,mu);
|
|
VV = trace(gV*Vector_mu); // (local) Vector-Vector conserved current
|
|
sliceSum(VV,sumVV,Tdir);
|
|
int Nt = sumVV.size();
|
|
for(int t=0;t<Nt;t++){
|
|
RealD Ct = real(TensorRemove(sumVV[t]))*LCscale;
|
|
RealD Cont=0;
|
|
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
|
|
std::cout<<GridLogMessage <<"VVc["<<mu<<"]["<<t<<"] "<< Ct
|
|
<< " 2 pi^2 t^3 C(t) "<< Ct/Cont << " delta Ct "<< Ct-Cont <<std::endl;
|
|
}
|
|
}
|
|
}
|
|
template<class Action>
|
|
void MasslessFreePropagator1(Action &D,LatticePropagator &source,LatticePropagator &propagator)
|
|
{
|
|
bool fiveD = false; //calculate 4d free propagator
|
|
RealD mass = D.Mass();
|
|
GridBase *UGrid = source.Grid();
|
|
LatticeFermion src4 (UGrid);
|
|
LatticeFermion result4 (UGrid);
|
|
for(int s=0;s<Nd;s++){
|
|
for(int c=0;c<Nc;c++){
|
|
PropToFerm<Action>(src4,source,s,c);
|
|
D.FreePropagator(src4,result4,mass,false);
|
|
FermToProp<Action>(propagator,result4,s,c);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Action>
|
|
void Solve(Action &D,LatticePropagator &source,LatticePropagator &propagator)
|
|
{
|
|
GridBase *UGrid = D.GaugeGrid();
|
|
GridBase *FGrid = D.FermionGrid();
|
|
|
|
LatticeFermion src4 (UGrid);
|
|
LatticeFermion src5 (FGrid);
|
|
LatticeFermion result5(FGrid);
|
|
LatticeFermion result4(UGrid);
|
|
LatticePropagator prop5(FGrid);
|
|
|
|
ConjugateGradient<LatticeFermion> CG(1.0e-7,100000);
|
|
SchurRedBlackDiagMooeeSolve<LatticeFermion> schur(CG);
|
|
ZeroGuesser<LatticeFermion> ZG; // Could be a DeflatedGuesser if have eigenvectors
|
|
for(int s=0;s<Nd;s++){
|
|
for(int c=0;c<Nc;c++){
|
|
PropToFerm<Action>(src4,source,s,c);
|
|
|
|
D.ImportPhysicalFermionSource(src4,src5);
|
|
|
|
result5=Zero();
|
|
schur(D,src5,result5,ZG);
|
|
std::cout<<GridLogMessage
|
|
<<"spin "<<s<<" color "<<c
|
|
<<" norm2(src5d) " <<norm2(src5)
|
|
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
|
|
|
|
D.ExportPhysicalFermionSolution(result5,result4);
|
|
|
|
FermToProp<Action>(prop5,result5,s,c);
|
|
FermToProp<Action>(propagator,result4,s,c);
|
|
}
|
|
}
|
|
LatticePropagator Axial_mu(UGrid);
|
|
LatticePropagator Vector_mu(UGrid);
|
|
|
|
LatticeComplex PA (UGrid);
|
|
LatticeComplex VV (UGrid);
|
|
LatticeComplex PJ5q(UGrid);
|
|
LatticeComplex PP (UGrid);
|
|
|
|
std::vector<TComplex> sumPA;
|
|
std::vector<TComplex> sumVV;
|
|
std::vector<TComplex> sumPP;
|
|
std::vector<TComplex> sumPJ5q;
|
|
|
|
Gamma g5(Gamma::Algebra::Gamma5);
|
|
D.ContractConservedCurrent(prop5,prop5,Axial_mu,source,Current::Axial,Tdir);
|
|
PA = trace(g5*Axial_mu); // Pseudoscalar-Axial conserved current
|
|
sliceSum(PA,sumPA,Tdir);
|
|
|
|
int Nt{static_cast<int>(sumPA.size())};
|
|
|
|
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PAc["<<t<<"] "<<real(TensorRemove(sumPA[t]))*LCscale<<std::endl;
|
|
|
|
PP = trace(adj(propagator)*propagator); // Pseudoscalar density
|
|
sliceSum(PP,sumPP,Tdir);
|
|
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PP["<<t<<"] "<<real(TensorRemove(sumPP[t]))*LCscale<<std::endl;
|
|
|
|
D.ContractJ5q(prop5,PJ5q);
|
|
sliceSum(PJ5q,sumPJ5q,Tdir);
|
|
for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"PJ5q["<<t<<"] "<<real(TensorRemove(sumPJ5q[t]))<<std::endl;
|
|
|
|
Gamma::Algebra GammaV[3] = {
|
|
Gamma::Algebra::GammaX,
|
|
Gamma::Algebra::GammaY,
|
|
Gamma::Algebra::GammaZ
|
|
};
|
|
for( int mu=0;mu<3;mu++ ) {
|
|
Gamma gV(GammaV[mu]);
|
|
D.ContractConservedCurrent(prop5,prop5,Vector_mu,source,Current::Vector,mu);
|
|
// auto ss=sliceSum(Vector_mu,Tdir);
|
|
// for(int t=0;t<Nt;t++) std::cout<<GridLogMessage <<"ss["<<mu<<"]["<<t<<"] "<<ss[t]<<std::endl;
|
|
VV = trace(gV*Vector_mu); // (local) Vector-Vector conserved current
|
|
sliceSum(VV,sumVV,Tdir);
|
|
for(int t=0;t<Nt;t++){
|
|
RealD Ct = real(TensorRemove(sumVV[t]))*LCscale;
|
|
RealD Cont=0;
|
|
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
|
|
std::cout<<GridLogMessage <<"VVc["<<mu<<"]["<<t<<"] "<< Ct
|
|
<< " 2 pi^2 t^3 C(t) "<< Ct/Cont << " delta Ct "<< Ct-Cont <<std::endl;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
class MesonFile: Serializable {
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFile, std::vector<std::vector<Complex> >, data);
|
|
};
|
|
|
|
void MesonTrace(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
|
|
{
|
|
const int nchannel=4;
|
|
Gamma::Algebra Gammas[nchannel][2] = {
|
|
{Gamma::Algebra::GammaXGamma5,Gamma::Algebra::GammaXGamma5},
|
|
{Gamma::Algebra::GammaYGamma5,Gamma::Algebra::GammaYGamma5},
|
|
{Gamma::Algebra::GammaZGamma5,Gamma::Algebra::GammaZGamma5},
|
|
{Gamma::Algebra::Identity,Gamma::Algebra::Identity}
|
|
};
|
|
|
|
LatticeComplex meson_CF(q1.Grid());
|
|
MesonFile MF;
|
|
|
|
for(int ch=0;ch<nchannel;ch++){
|
|
|
|
Gamma Gsrc(Gammas[ch][0]);
|
|
Gamma Gsnk(Gammas[ch][1]);
|
|
|
|
meson_CF = trace(adj(q1)*Gsnk*q2*adj(Gsrc));
|
|
|
|
std::vector<TComplex> meson_T;
|
|
sliceSum(meson_CF,meson_T, Tdir);
|
|
|
|
int nt=meson_T.size();
|
|
|
|
std::vector<Complex> corr(nt);
|
|
for(int t=0;t<nt;t++){
|
|
corr[t] = TensorRemove(meson_T[t])*LLscale; // Yes this is ugly, not figured a work around
|
|
RealD Ct = real(corr[t]);
|
|
RealD Cont=0;
|
|
if(t) Cont=1.0/(2 * M_PI *M_PI * t*t*t);
|
|
std::cout << " channel "<<ch<<" t "<<t<<" " <<real(corr[t])<< " 2 pi^2 t^3 C(t) "<< 2 * M_PI *M_PI * t*t*t * Ct
|
|
<< " deltaC " <<Ct-Cont<<std::endl;
|
|
}
|
|
MF.data.push_back(corr);
|
|
}
|
|
|
|
{
|
|
XmlWriter WR(file);
|
|
write(WR,"MesonFile",MF);
|
|
}
|
|
}
|
|
|
|
int main (int argc, char ** argv)
|
|
{
|
|
|
|
Grid_init(&argc,&argv);
|
|
int Ls= atoi(getenv("Ls"));
|
|
|
|
// Double precision grids
|
|
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
|
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
|
GridDefaultMpi());
|
|
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
|
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
|
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// You can manage seeds however you like.
|
|
// Recommend SeedUniqueString.
|
|
//////////////////////////////////////////////////////////////////////
|
|
// std::vector<int> seeds4({1,2,3,4});
|
|
// GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
|
|
|
|
LatticeGaugeField Umu(UGrid);
|
|
std::string config;
|
|
RealD M5=atof(getenv("M5"));
|
|
RealD mq = atof(getenv("mass"));
|
|
int point_x = atoi(getenv("point_x"));
|
|
int point_y = atoi(getenv("point_y"));
|
|
int point_z = atoi(getenv("point_z"));
|
|
int point_t = atoi(getenv("point_t"));
|
|
std::vector<RealD> masses({ mq} ); // u/d, s, c ??
|
|
if( argc > 1 && argv[1][0] != '-' )
|
|
{
|
|
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
|
|
FieldMetaData header;
|
|
NerscIO::readConfiguration(Umu, header, argv[1]);
|
|
config=argv[1];
|
|
LLscale = 1.0;
|
|
LCscale = 1.0;
|
|
} else {
|
|
printf("Expected a configuration");
|
|
exit(0);
|
|
}
|
|
|
|
int nmass = masses.size();
|
|
|
|
typedef MobiusFermionD FermionActionD;
|
|
std::vector<FermionActionD *> FermActs;
|
|
|
|
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
|
std::cout<<GridLogMessage <<"DomainWallFermion action"<<std::endl;
|
|
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
|
|
|
for(auto mass: masses) {
|
|
std::vector<Complex> boundary = {1,1,1,-1};
|
|
FermionActionD::ImplParams Params(boundary);
|
|
RealD b=1.5;
|
|
RealD c=0.5;
|
|
FermActs.push_back(new FermionActionD(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c));
|
|
}
|
|
|
|
LatticePropagator point_source(UGrid);
|
|
|
|
Coordinate Origin({point_x,point_y,point_z,point_t});
|
|
PointSource (Origin,point_source);
|
|
|
|
std::vector<LatticePropagator> PointProps(nmass,UGrid);
|
|
|
|
for(int m=0;m<nmass;m++) {
|
|
Solve(*FermActs[m],point_source ,PointProps[m]);
|
|
}
|
|
|
|
LatticeComplex phase(UGrid);
|
|
Coordinate mom({0,0,0,0});
|
|
MakePhase(mom,phase);
|
|
|
|
for(int m1=0 ;m1<nmass;m1++) {
|
|
for(int m2=m1;m2<nmass;m2++) {
|
|
std::stringstream ssp,ssg,ssz;
|
|
|
|
ssp<<config<< "_m" << m1 << "_m"<< m2 << "_point_meson.xml";
|
|
ssz<<config<< "_m" << m1 << "_m"<< m2 << "_free_meson.xml";
|
|
|
|
std::cout << "CG determined VV correlation function"<<std::endl;
|
|
MesonTrace(ssp.str(),PointProps[m1],PointProps[m2],phase);
|
|
|
|
}}
|
|
|
|
Grid_finalize();
|
|
}
|
|
|
|
|
|
|