mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 01:35:36 +00:00
226 lines
7.8 KiB
C++
226 lines
7.8 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Hadrons/Modules/MNPR/Bilinear.hpp
|
|
|
|
Copyright (C) 2015-2019
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: Julia Kettle J.R.Kettle-2@sms.ed.ac.uk
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef Hadrons_Bilinear_hpp_
|
|
#define Hadrons_Bilinear_hpp_
|
|
|
|
#include <Hadrons/Global.hpp>
|
|
#include <Hadrons/Module.hpp>
|
|
#include <Hadrons/ModuleFactory.hpp>
|
|
#include <Hadrons/ModuleFactory.hpp>
|
|
//#include <Grid/qcd/utils/PropagatorUtils.h>
|
|
|
|
BEGIN_HADRONS_NAMESPACE
|
|
|
|
/******************************************************************************
|
|
* TBilinear *
|
|
Performs bilinear contractions of the type tr[g5*adj(Sout)*g5*G*Sin]
|
|
Suitable for non exceptional momenta in Rome-Southampton NPR
|
|
******************************************************************************/
|
|
BEGIN_MODULE_NAMESPACE(MNPR)
|
|
|
|
class BilinearPar: Serializable
|
|
{
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(BilinearPar,
|
|
std::string, Sin,
|
|
std::string, Sout,
|
|
std::string, pin,
|
|
std::string, pout,
|
|
std::string, output);
|
|
};
|
|
|
|
template <typename FImpl1, typename FImpl2>
|
|
class TBilinear: public Module<BilinearPar>
|
|
{
|
|
public:
|
|
FERM_TYPE_ALIASES(FImpl1, 1);
|
|
FERM_TYPE_ALIASES(FImpl2, 2);
|
|
class Result: Serializable
|
|
{
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
|
|
std::vector<SpinColourMatrix>, bilinear);
|
|
};
|
|
public:
|
|
// constructor
|
|
TBilinear(const std::string name);
|
|
// destructor
|
|
virtual ~TBilinear(void) {};
|
|
// dependencies/products
|
|
virtual std::vector<std::string> getInput(void);
|
|
virtual std::vector<std::string> getOutput(void);
|
|
//LatticeSpinColourMatrix PhaseProps(LatticeSpinColourMatrix S, std::vector<Real> p);
|
|
// setup
|
|
virtual void setup(void);
|
|
// execution
|
|
virtual void execute(void);
|
|
};
|
|
|
|
MODULE_REGISTER_TMP(Bilinear, ARG(TBilinear<FIMPL, FIMPL>), MNPR);
|
|
|
|
/******************************************************************************
|
|
* TBilinear implementation *
|
|
******************************************************************************/
|
|
// constructor /////////////////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
TBilinear<FImpl1, FImpl2>::TBilinear(const std::string name)
|
|
: Module<BilinearPar>(name)
|
|
{}
|
|
|
|
// setup ///////////////////////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
void TBilinear<FImpl1, FImpl2>::setup(void)
|
|
{
|
|
//env().template registerLattice<LatticeSpinColourMatrix>(getName());
|
|
//env().template registerObject<SpinColourMatrix>(getName());
|
|
}
|
|
|
|
// dependencies/products ///////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
std::vector<std::string> TBilinear<FImpl1, FImpl2>::getInput(void)
|
|
{
|
|
std::vector<std::string> input = {par().Sin, par().Sout};
|
|
|
|
return input;
|
|
}
|
|
|
|
template <typename FImpl1, typename FImpl2>
|
|
std::vector<std::string> TBilinear<FImpl1, FImpl2>::getOutput(void)
|
|
{
|
|
std::vector<std::string> out = {getName()};
|
|
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
/////Phase propagators//////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
LatticeSpinColourMatrix TBilinear<FImpl1, FImpl2>::PhaseProps(LatticeSpinColourMatrix S, std::vector<Real> p)
|
|
{
|
|
GridBase *grid = S._grid;
|
|
LatticeComplex pdotx(grid), coor(grid);
|
|
std::vector<int> latt_size = grid->_fdimensions;
|
|
Complex Ci(0.0,1.0);
|
|
pdotx=zero;
|
|
for (unsigned int mu = 0; mu < 4; ++mu)
|
|
{
|
|
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
LatticeCoordinate(coor,mu);
|
|
pdotx = pdotx +(TwoPiL * p[mu]) * coor;
|
|
}
|
|
S = S*exp(-Ci*pdotx);
|
|
return S;
|
|
}
|
|
*/
|
|
// execution ///////////////////////////////////////////////////////////////////
|
|
template <typename FImpl1, typename FImpl2>
|
|
void TBilinear<FImpl1, FImpl2>::execute(void)
|
|
{
|
|
/**************************************************************************
|
|
|
|
Compute the bilinear vertex needed for the NPR.
|
|
V(G) = sum_x [ g5 * adj(S'(x,p2)) * g5 * G * S'(x,p1) ]_{si,sj,ci,cj}
|
|
G is one of the 16 gamma vertices [I,gmu,g5,g5gmu,sig(mu,nu)]
|
|
|
|
* G
|
|
/ \
|
|
p1/ \p2
|
|
/ \
|
|
/ \
|
|
|
|
Returns a spin-colour matrix, with indices si,sj, ci,cj
|
|
|
|
Conventions:
|
|
p1 - incoming momenta
|
|
p2 - outgoing momenta
|
|
q = (p1-p2)
|
|
**************************************************************************/
|
|
|
|
LOG(Message) << "Computing bilinear contractions '" << getName() << "' using"
|
|
<< " momentum '" << par().Sin << "' and '" << par().Sout << "'"
|
|
<< std::endl;
|
|
|
|
BinaryWriter writer(par().output);
|
|
|
|
|
|
// Propogators
|
|
LatticeSpinColourMatrix &Sin = *env().template getObject<LatticeSpinColourMatrix>(par().Sin);
|
|
LatticeSpinColourMatrix &Sout = *env().template getObject<LatticeSpinColourMatrix>(par().Sout);
|
|
LatticeComplex pdotxin(env().getGrid()), pdotxout(env().getGrid()), coor(env().getGrid());
|
|
// momentum on legs
|
|
std::vector<Real> pin = strToVec<Real>(par().pin), pout = strToVec<Real>(par().pout);
|
|
std::vector<Real> latt_size(pin.begin(), pin.end());
|
|
//bilinears
|
|
LatticeSpinColourMatrix bilinear_x(env().getGrid());
|
|
SpinColourMatrix bilinear;
|
|
Gamma g5(Gamma::Algebra::Gamma5);
|
|
Result result;
|
|
Complex Ci(0.0,1.0);
|
|
|
|
//
|
|
|
|
pdotxin=zero;
|
|
pdotxout=zero;
|
|
for (unsigned int mu = 0; mu < 4; ++mu)
|
|
{
|
|
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
LatticeCoordinate(coor,mu);
|
|
pdotxin = pdotxin +(TwoPiL * pin[mu]) * coor;
|
|
pdotxout= pdotxout +(TwoPiL * pout[mu]) * coor;
|
|
}
|
|
Sin = Sin*exp(-Ci*pdotxin); //phase corrections
|
|
Sout = Sout*exp(-Ci*pdotxout);
|
|
|
|
////Set up gamma vector//////////////////////////
|
|
std::vector<Gamma> gammavector;
|
|
for( int i=0; i<Gamma::nGamma; i++){
|
|
Gamma::Algebra gam = i;
|
|
gammavector.push_back(Gamma(gam));
|
|
}
|
|
result.bilinear.resize(Gamma::nGamma);
|
|
/////////////////////////////////////////////////
|
|
//LatticeSpinMatrix temp = g5*Sout;
|
|
////////Form Vertex//////////////////////////////
|
|
for (int i=0; i < Gamma::nGamma; i++){
|
|
bilinear_x = g5*adj(Sout)*g5*gammavector[i]*Sin;
|
|
result.bilinear[i] = sum(bilinear_x); //sum over lattice sites
|
|
}
|
|
//////////////////////////////////////////////////
|
|
write(writer, par().output, result.bilinear);
|
|
LOG(Message) << "Complete. Writing results to " << par().output << std:: endl;
|
|
}
|
|
|
|
END_MODULE_NAMESPACE
|
|
|
|
END_HADRONS_NAMESPACE
|
|
|
|
#endif // Hadrons_Bilinear_hpp_
|