1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00
Grid/HMC/ComputeWilsonFlow.cc
2024-06-05 15:51:11 -04:00

239 lines
8.4 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: HMC/ComputeWilsonFlow.cc
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Shuhei Yamamoto <syamamoto@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <string>
namespace Grid{
struct WFParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(WFParameters,
int, steps,
double, step_size,
int, meas_interval,
double, maxTau, // for the adaptive algorithm
int, meas_interval_density,
std::string, path);
template <class ReaderClass >
WFParameters(Reader<ReaderClass>& Reader){
read(Reader, "WilsonFlow", *this);
}
};
struct ConfParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ConfParameters,
std::string, conf_path,
std::string, conf_prefix,
std::string, conf_smr_prefix,
std::string, rng_prefix,
int, StartConfiguration,
int, EndConfiguration,
int, Skip);
template <class ReaderClass >
ConfParameters(Reader<ReaderClass>& Reader){
read(Reader, "Configurations", *this);
}
};
}
template <class T> void writeFile(T& in, std::string const fname){
#ifdef HAVE_LIME
// Ref: https://github.com/paboyle/Grid/blob/feature/scidac-wp1/tests/debug/Test_general_coarse_hdcg_phys48.cc#L111
std::cout << Grid::GridLogMessage << "Writes to: " << fname << std::endl;
Grid::emptyUserRecord record;
Grid::ScidacWriter WR(in.Grid()->IsBoss());
WR.open(fname);
WR.writeScidacFieldRecord(in,record,0);
WR.close();
#endif
// What is the appropriate way to throw error?
}
int main(int argc, char **argv) {
using namespace Grid;
Grid_init(&argc, &argv);
GridLogLayout();
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
std::vector<int> seeds({1, 2, 3, 4, 5});
GridSerialRNG sRNG;
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField Umu(&Grid), Uflow(&Grid);
typedef Grid::XmlReader Serialiser;
Serialiser Reader("input.xml", false, "root");
WFParameters WFPar(Reader);
ConfParameters CPar(Reader);
CheckpointerParameters CPPar(CPar.conf_path+CPar.conf_prefix, CPar.conf_path+CPar.conf_smr_prefix, CPar.conf_path+CPar.rng_prefix);
NerscHmcCheckpointer<PeriodicGimplR> CPNersc(CPPar);
for (int conf = CPar.StartConfiguration; conf <= CPar.EndConfiguration; conf+= CPar.Skip){
CPNersc.CheckpointRestore(conf, Umu, sRNG, pRNG);
std::cout << std::setprecision(15);
std::cout << GridLogMessage << "Initial plaquette: "<< WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu) << std::endl;
std::string file_pre = WFPar.path;
std::string file_post = CPar.conf_prefix + "." + std::to_string(conf);
WilsonFlow<PeriodicGimplR> WF(WFPar.step_size,WFPar.steps,WFPar.meas_interval);
WF.addMeasurement(WFPar.meas_interval_density, [&file_pre,&file_post,&conf](int step, RealD t, const typename PeriodicGimplR::GaugeField &U){
typedef typename PeriodicGimplR::GaugeLinkField GaugeMat;
typedef typename PeriodicGimplR::ComplexField ComplexField;
assert(Nd == 4);
// NOTE:
// Ideally, turn the folloing into methods of the appropriate class
///////////// Compute Energy Density via Clover Leaf /////////////////////////////////////////////////
///// Taken from qcd/smearing/WilsonFlow.h
// For plq, use static sitePlaquette from class WilsonLoops in Grid/qcd/utils/WilsonLoops.h and divide it by #faces=(1.0 * Nd * (Nd - 1)) / 2.0, ncol=3
//E = 1/2 tr( F_munu F_munu )
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
//F_01 F_02 F_03 F_12 F_13 F_23
GaugeMat F(U.Grid());
//LatticeComplexD R(U.Grid());
ComplexField R(U.Grid());
R = Zero();
for(int mu=0;mu<3;mu++){
for(int nu=mu+1;nu<4;nu++){
WilsonLoops<PeriodicGimplR>::FieldStrength(F, U, mu, nu);
R = R + trace(F*F);
}
}
R = (-1.0) * R;
//// Taken from qcd/utils/WilsonLoops.h
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
GaugeMat Bx(U.Grid()), By(U.Grid()), Bz(U.Grid());
WilsonLoops<PeriodicGimplR>::FieldStrength(Bx, U, Ydir, Zdir);
WilsonLoops<PeriodicGimplR>::FieldStrength(By, U, Zdir, Xdir);
WilsonLoops<PeriodicGimplR>::FieldStrength(Bz, U, Xdir, Ydir);
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
GaugeMat Ex(U.Grid()), Ey(U.Grid()), Ez(U.Grid());
WilsonLoops<PeriodicGimplR>::FieldStrength(Ex, U, Tdir, Xdir);
WilsonLoops<PeriodicGimplR>::FieldStrength(Ey, U, Tdir, Ydir);
WilsonLoops<PeriodicGimplR>::FieldStrength(Ez, U, Tdir, Zdir);
double coeff = 8.0/(32.0*M_PI*M_PI);
ComplexField qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
//ComplexField qfield Plq(U.Grid());
//WilsonLoops<PeriodicGimplR>::sitePlaquette(Plq, U);
//double coeff = 2.0 / (1.0 * Nd * (Nd - 1)) / 3.0;
//Plq = coeff * Plq;
int tau = std::round(t);
std::string efile = file_pre + "E_dnsty_" + std::to_string(tau) + "_" + file_post;
writeFile(R,efile);
std::string tfile = file_pre + "Top_dnsty_" + std::to_string(tau) + "_" + file_post;
writeFile(qfield,tfile);
RealD E = real(sum(R))/ RealD(U.Grid()->gSites());
RealD T = real( sum(qfield) );
Coordinate scoor; for (int mu=0; mu < Nd; mu++) scoor[mu] = 0;
RealD E0 = real(peekSite(R,scoor));
RealD T0 = real(peekSite(qfield,scoor));
std::cout << GridLogMessage << "[WilsonFlow] Saved energy density (clover) & topo. charge density: " << conf << " " << step << " " << tau << " "
<< "(E_avg,T_sum) " << E << " " << T << " (E, T at origin) " << E0 << " " << T0 << std::endl;
});
int t=WFPar.maxTau;
WF.smear(Uflow, Umu);
RealD WFlow_plaq = WilsonLoops<PeriodicGimplR>::avgPlaquette(Uflow);
RealD WFlow_TC = WilsonLoops<PeriodicGimplR>::TopologicalCharge(Uflow);
RealD WFlow_T0 = WF.energyDensityPlaquette(t,Uflow); // t
RealD WFlow_EC = WF.energyDensityCloverleaf(t,Uflow);
std::cout << GridLogMessage << "Plaquette "<< conf << " " << WFlow_plaq << std::endl;
std::cout << GridLogMessage << "T0 "<< conf << " " << WFlow_T0 << std::endl;
std::cout << GridLogMessage << "TC0 "<< conf << " " << WFlow_EC << std::endl;
std::cout << GridLogMessage << "TopologicalCharge "<< conf << " " << WFlow_TC << std::endl;
std::cout<< GridLogMessage << " Admissibility check:\n";
const double sp_adm = 0.067; // admissible threshold
const double pl_adm = 1.0-sp_adm/Nc;
std::cout << GridLogMessage << " (pl_adm =" << pl_adm << ")\n";
// Need min and reduce min for this function
//double sp_max = NC_*(1.0-stpl.plaq_min(U,pl_adm));
double sp_ave = Nc*(1.0-WFlow_plaq);
//std::cout<< GridLogMessage << " sp_max = " << sp_max <<"\n";
std::cout<< GridLogMessage << " sp_ave = " << sp_ave <<"\n";
std::cout<< GridLogMessage << " (sp_admissible = "<< sp_adm <<")\n";
//std::cout<< GridLogMessage << " sp_admissible - sp_max = "<<sp_adm-sp_max <<"\n";
std::cout<< GridLogMessage << " sp_admissible - sp_ave = "<<sp_adm-sp_ave <<"\n";
}
Grid_finalize();
} // main
/*
Input file example
JSON
{
"WilsonFlow":{
"steps": 200,
"step_size": 0.01,
"meas_interval": 50,
"maxTau": 2.0
},
"Configurations":{
"conf_prefix": "ckpoint_lat",
"rng_prefix": "ckpoint_rng",
"StartConfiguration": 3000,
"EndConfiguration": 3000,
"Skip": 5
}
}
*/