1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/programs/Hadrons/GeneticScheduler.hpp

234 lines
7.0 KiB
C++

/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: programs/Hadrons/GeneticScheduler.hpp
Copyright (C) 2016
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
#ifndef Hadrons_GeneticScheduler_hpp_
#define Hadrons_GeneticScheduler_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Graph.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Scheduler based on a genetic algorithm *
******************************************************************************/
template <typename T>
class GeneticScheduler
{
public:
typedef std::function<int(const std::vector<T> &)> ObjFunc;
struct Parameters
{
double mutationRate;
unsigned int popSize, seed;
};
public:
// constructor
GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
const Parameters &par);
// destructor
virtual ~GeneticScheduler(void) = default;
// access
const std::vector<T> & getMinSchedule(void);
int getMinValue(void);
// breed a new generation
void nextGeneration(void);
// print population
friend std::ostream & operator<<(std::ostream &out,
const GeneticScheduler<T> &s)
{
for (auto &p: s.population_)
{
out << p.second << ": " << p.first << std::endl;
}
return out;
}
private:
// randomly initialize population
void initPopulation(void);
// genetic operators
const std::vector<T> & selection(void);
void crossover(const std::vector<T> &c1,
const std::vector<T> &c2);
void mutation(std::vector<T> &c);
private:
Graph<T> &graph_;
const ObjFunc &func_;
const Parameters par_;
std::multimap<int, std::vector<T>> population_;
std::mt19937 gen_;
};
/******************************************************************************
* template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename T>
GeneticScheduler<T>::GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
const Parameters &par)
: graph_(graph)
, func_(func)
, par_(par)
{
gen_.seed(par_.seed);
}
// access //////////////////////////////////////////////////////////////////////
template <typename T>
const std::vector<T> & GeneticScheduler<T>::getMinSchedule(void)
{
return population_.begin()->second;
}
template <typename T>
int GeneticScheduler<T>::getMinValue(void)
{
return population_.begin()->first;
}
// breed a new generation //////////////////////////////////////////////////////
template <typename T>
void GeneticScheduler<T>::nextGeneration(void)
{
std::uniform_real_distribution<double> dis(0., 1.);
// random initialization of the population if necessary
if (population_.size() != par_.popSize)
{
initPopulation();
}
// mating
for (unsigned int i = 0; i < par_.popSize/2; ++i)
{
auto &p1 = selection(), &p2 = selection();
crossover(p1, p2);
}
// random mutations
auto buf = population_;
population_.clear();
for (auto &c: buf)
{
if (dis(gen_) < par_.mutationRate)
{
mutation(c.second);
}
population_.emplace(func_(c.second), c.second);
}
// grim reaper
auto it = population_.begin();
std::advance(it, par_.popSize);
population_.erase(it, population_.end());
}
// randomly initialize population //////////////////////////////////////////////
template <typename T>
void GeneticScheduler<T>::initPopulation(void)
{
population_.clear();
for (unsigned int i = 0; i < par_.popSize; ++i)
{
auto p = graph_.topoSort(gen_);
population_.emplace(func_(p), p);
}
}
// genetic operators ///////////////////////////////////////////////////////////
template <typename T>
const std::vector<T> & GeneticScheduler<T>::selection(void)
{
std::vector<double> prob;
for (auto &c: population_)
{
prob.push_back(1./c.first);
}
std::discrete_distribution<unsigned int> dis(prob.begin(), prob.end());
auto rIt = population_.begin();
std::advance(rIt, dis(gen_));
return rIt->second;
}
template <typename T>
void GeneticScheduler<T>::crossover(const std::vector<T> &p1,
const std::vector<T> &p2)
{
std::uniform_int_distribution<unsigned int> dis(1, p1.size() - 2);
unsigned int cut = dis(gen_);
std::vector<T> c1, c2, buf;
auto cross = [&buf, cut](std::vector<T> &c, const std::vector<T> &p1,
const std::vector<T> &p2)
{
buf = p2;
for (unsigned int i = 0; i < cut; ++i)
{
c.push_back(p1[i]);
buf.erase(std::find(buf.begin(), buf.end(), p1[i]));
}
for (unsigned int i = 0; i < buf.size(); ++i)
{
c.push_back(buf[i]);
}
};
cross(c1, p1, p2);
cross(c2, p2, p1);
population_.emplace(func_(c1), c1);
population_.emplace(func_(c2), c2);
}
template <typename T>
void GeneticScheduler<T>::mutation(std::vector<T> &c)
{
std::uniform_int_distribution<unsigned int> dis(1, c.size() - 2);
unsigned int cut = dis(gen_);
Graph<T> g = graph_;
std::vector<T> buf;
for (unsigned int i = cut; i < c.size(); ++i)
{
g.removeVertex(c[i]);
}
buf = g.topoSort(gen_);
for (unsigned int i = cut; i < c.size(); ++i)
{
buf.push_back(c[i]);
}
c = buf;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_GeneticScheduler_hpp_