mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
697 lines
31 KiB
C++
697 lines
31 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Hadrons/Modules/MDistil/Distil.hpp
|
|
|
|
Copyright (C) 2015-2019
|
|
|
|
Author: Felix Erben <ferben@ed.ac.uk>
|
|
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef Hadrons_MDistil_Distil_hpp_
|
|
#define Hadrons_MDistil_Distil_hpp_
|
|
|
|
#include <Hadrons/Global.hpp>
|
|
#include <Hadrons/Module.hpp>
|
|
#include <Hadrons/ModuleFactory.hpp>
|
|
#include <Hadrons/Solver.hpp>
|
|
#include <Hadrons/EigenPack.hpp>
|
|
#include <Hadrons/A2AVectors.hpp>
|
|
#include <Hadrons/DilutedNoise.hpp>
|
|
|
|
/******************************************************************************
|
|
A consistent set of cross-platform methods for big endian <-> host byte ordering
|
|
I imagine this exists already?
|
|
This can be removed once the (deprecated) NamedTensor::ReadBinary & WriteBinary methods are deleted
|
|
******************************************************************************/
|
|
|
|
#if defined(__linux__)
|
|
# include <endian.h>
|
|
#elif defined(__FreeBSD__) || defined(__NetBSD__)
|
|
# include <sys/endian.h>
|
|
#elif defined(__OpenBSD__)
|
|
# include <sys/types.h>
|
|
# define be16toh(x) betoh16(x)
|
|
# define be32toh(x) betoh32(x)
|
|
# define be64toh(x) betoh64(x)
|
|
#elif defined(__APPLE__)
|
|
#include <libkern/OSByteOrder.h>
|
|
#define htobe16(x) OSSwapHostToBigInt16(x)
|
|
#define htole16(x) OSSwapHostToLittleInt16(x)
|
|
#define be16toh(x) OSSwapBigToHostInt16(x)
|
|
#define le16toh(x) OSSwapLittleToHostInt16(x)
|
|
|
|
#define htobe32(x) OSSwapHostToBigInt32(x)
|
|
#define htole32(x) OSSwapHostToLittleInt32(x)
|
|
#define be32toh(x) OSSwapBigToHostInt32(x)
|
|
#define le32toh(x) OSSwapLittleToHostInt32(x)
|
|
|
|
#define htobe64(x) OSSwapHostToBigInt64(x)
|
|
#define htole64(x) OSSwapHostToLittleInt64(x)
|
|
#define be64toh(x) OSSwapBigToHostInt64(x)
|
|
#define le64toh(x) OSSwapLittleToHostInt64(x)
|
|
#endif
|
|
|
|
/******************************************************************************
|
|
This potentially belongs in CartesianCommunicator
|
|
******************************************************************************/
|
|
|
|
BEGIN_MODULE_NAMESPACE(Grid)
|
|
inline void SliceShare( GridBase * gridLowDim, GridBase * gridHighDim, void * Buffer, int BufferSize )
|
|
{
|
|
// Work out which dimension is the spread-out dimension
|
|
assert(gridLowDim);
|
|
assert(gridHighDim);
|
|
const int iNumDims{(const int)gridHighDim->_gdimensions.size()};
|
|
assert(iNumDims == gridLowDim->_gdimensions.size());
|
|
int dimSpreadOut = -1;
|
|
std::vector<int> coor(iNumDims);
|
|
for( int i = 0 ; i < iNumDims ; i++ ) {
|
|
coor[i] = gridHighDim->_processor_coor[i];
|
|
if( gridLowDim->_gdimensions[i] != gridHighDim->_gdimensions[i] ) {
|
|
assert( dimSpreadOut == -1 );
|
|
assert( gridLowDim->_processors[i] == 1 ); // easiest assumption to make for now
|
|
dimSpreadOut = i;
|
|
}
|
|
}
|
|
if( dimSpreadOut != -1 && gridHighDim->_processors[dimSpreadOut] != gridLowDim->_processors[dimSpreadOut] ) {
|
|
// Make sure the same number of data elements exist on each slice
|
|
const int NumSlices{gridHighDim->_processors[dimSpreadOut] / gridLowDim->_processors[dimSpreadOut]};
|
|
assert(gridHighDim->_processors[dimSpreadOut] == gridLowDim->_processors[dimSpreadOut] * NumSlices);
|
|
const int SliceSize{BufferSize/NumSlices};
|
|
//CCC_DEBUG_DUMP(Buffer, NumSlices, SliceSize);
|
|
assert(BufferSize == SliceSize * NumSlices);
|
|
//#ifndef USE_LOCAL_SLICES
|
|
// assert(0); // Can't do this without MPI (should really test whether MPI is defined)
|
|
//#else
|
|
const auto MyRank = gridHighDim->ThisRank();
|
|
std::vector<CommsRequest_t> reqs(0);
|
|
int MySlice{coor[dimSpreadOut]};
|
|
char * const _buffer{(char *)Buffer};
|
|
char * const MyData{_buffer + MySlice * SliceSize};
|
|
for(int i = 1; i < NumSlices ; i++ ){
|
|
int SendSlice = ( MySlice + i ) % NumSlices;
|
|
int RecvSlice = ( MySlice - i + NumSlices ) % NumSlices;
|
|
char * const RecvData{_buffer + RecvSlice * SliceSize};
|
|
coor[dimSpreadOut] = SendSlice;
|
|
const auto SendRank = gridHighDim->RankFromProcessorCoor(coor);
|
|
coor[dimSpreadOut] = RecvSlice;
|
|
const auto RecvRank = gridHighDim->RankFromProcessorCoor(coor);
|
|
std::cout << GridLogMessage << "Send slice " << MySlice << " (" << MyRank << ") to " << SendSlice << " (" << SendRank
|
|
<< "), receive slice from " << RecvSlice << " (" << RecvRank << ")" << std::endl;
|
|
gridHighDim->SendToRecvFromBegin(reqs,MyData,SendRank,RecvData,RecvRank,SliceSize);
|
|
//memcpy(RecvData,MyData,SliceSize); // Debug
|
|
}
|
|
gridHighDim->SendToRecvFromComplete(reqs);
|
|
std::cout << GridLogMessage << "Slice data shared." << std::endl;
|
|
//CCC_DEBUG_DUMP(Buffer, NumSlices, SliceSize);
|
|
//#endif
|
|
}
|
|
}
|
|
|
|
/*************************************************************************************
|
|
|
|
Not sure where the right home for this is? But presumably in Grid
|
|
|
|
-Grad^2 (Peardon, 2009, pg 2, equation 3, https://arxiv.org/abs/0905.2160)
|
|
Field Type of field the operator will be applied to
|
|
GaugeField Gauge field the operator will smear using
|
|
|
|
*************************************************************************************/
|
|
|
|
template<typename Field, typename GaugeField=LatticeGaugeField>
|
|
class LinOpPeardonNabla : public LinearOperatorBase<Field>, public LinearFunction<Field> {
|
|
typedef typename GaugeField::vector_type vCoeff_t;
|
|
protected: // I don't really mind if _gf is messed with ... so make this public?
|
|
//GaugeField & _gf;
|
|
int nd; // number of spatial dimensions
|
|
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
|
|
public:
|
|
// Construct this operator given a gauge field and the number of dimensions it should act on
|
|
LinOpPeardonNabla( GaugeField& gf, int dimSpatial = Grid::QCD::Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
|
|
assert(dimSpatial>=1);
|
|
for( int mu = 0 ; mu < nd ; mu++ )
|
|
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
|
|
}
|
|
|
|
// Apply this operator to "in", return result in "out"
|
|
void operator()(const Field& in, Field& out) {
|
|
assert( nd <= in._grid->Nd() );
|
|
conformable( in, out );
|
|
out = ( ( Real ) ( 2 * nd ) ) * in;
|
|
Field _tmp(in._grid);
|
|
typedef typename GaugeField::vector_type vCoeff_t;
|
|
//Lattice<iColourMatrix<vCoeff_t> > U(in._grid);
|
|
for( int mu = 0 ; mu < nd ; mu++ ) {
|
|
//U = PeekIndex<LorentzIndex>(_gf,mu);
|
|
out -= U[mu] * Cshift( in, mu, 1);
|
|
_tmp = adj( U[mu] ) * in;
|
|
out -= Cshift(_tmp,mu,-1);
|
|
}
|
|
}
|
|
|
|
void OpDiag (const Field &in, Field &out) { assert(0); };
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); };
|
|
void Op (const Field &in, Field &out) { assert(0); };
|
|
void AdjOp (const Field &in, Field &out) { assert(0); };
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) { assert(0); };
|
|
void HermOp(const Field &in, Field &out) { operator()(in,out); };
|
|
};
|
|
|
|
template<typename Field>
|
|
class LinOpPeardonNablaHerm : public LinearFunction<Field> {
|
|
public:
|
|
OperatorFunction<Field> & _poly;
|
|
LinearOperatorBase<Field> &_Linop;
|
|
|
|
LinOpPeardonNablaHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
|
: _poly{poly}, _Linop{linop} {}
|
|
|
|
void operator()(const Field& in, Field& out) {
|
|
_poly(_Linop,in,out);
|
|
}
|
|
};
|
|
|
|
END_MODULE_NAMESPACE // Grid
|
|
|
|
/******************************************************************************
|
|
Common elements for distillation
|
|
******************************************************************************/
|
|
|
|
BEGIN_HADRONS_NAMESPACE
|
|
|
|
BEGIN_MODULE_NAMESPACE(MDistil)
|
|
|
|
using LapEvecs = Grid::Hadrons::EigenPack<LatticeColourVector>;
|
|
|
|
// Noise vector index order: nnoise, nt, nvec, ns
|
|
using NoiseTensor = Eigen::Tensor<Complex, 4, Eigen::RowMajor>;
|
|
|
|
struct DistilParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(DistilParameters,
|
|
int, nnoise,
|
|
int, tsrc,
|
|
std::string, TI,
|
|
std::string, LI,
|
|
std::string, SI )
|
|
DistilParameters() = default;
|
|
template <class ReaderClass> DistilParameters(Reader<ReaderClass>& Reader){read(Reader,"Distil",*this);}
|
|
|
|
// Numeric parameter is allowed to be empty (in which case it = Default),
|
|
// but assert during setup() if specified but not numeric
|
|
|
|
static int ParameterDefault( const std::string & s, int Default, bool bCalledFromSetup )
|
|
{
|
|
int i = Default;
|
|
if( s.length() > 0 ) {
|
|
std::istringstream ss( s );
|
|
ss >> i;
|
|
if( bCalledFromSetup )
|
|
assert( !ss.fail() && "Parameter should either be empty or integer" );
|
|
}
|
|
return i;
|
|
}
|
|
|
|
int getTI( const Environment & env, bool bCalledFromSetup ) const {
|
|
return ParameterDefault( TI, env.getDim(Tdir), bCalledFromSetup ); }
|
|
};
|
|
|
|
#define DISTIL_PARAMETERS_DEFINE( inSetup ) \
|
|
const int Nt{env().getDim(Tdir)}; \
|
|
const int nvec{par().nvec}; \
|
|
const int Ns{Grid::QCD::Ns}; \
|
|
const int nnoise{par().Distil.nnoise}; \
|
|
const int tsrc{par().Distil.tsrc}; \
|
|
const int TI{par().Distil.getTI(env(), inSetup)}; \
|
|
const int LI{Hadrons::MDistil::DistilParameters::ParameterDefault(par().Distil.LI, nvec, inSetup)}; \
|
|
const int SI{Hadrons::MDistil::DistilParameters::ParameterDefault(par().Distil.SI, Ns, inSetup)}; \
|
|
const bool full_tdil{ TI == Nt }; \
|
|
const bool exact_distillation{ full_tdil && LI == nvec }; \
|
|
const int Nt_inv{ full_tdil ? 1 : TI }
|
|
|
|
class BFieldIO: Serializable{
|
|
public:
|
|
using BaryonTensorSet = Eigen::Tensor<ComplexD, 6>;
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(BFieldIO, BaryonTensorSet, BField );
|
|
};
|
|
|
|
/******************************************************************************
|
|
Default for distillation file operations. For now only used by NamedTensor
|
|
******************************************************************************/
|
|
|
|
#ifdef HAVE_HDF5
|
|
using Default_Reader = Grid::Hdf5Reader;
|
|
using Default_Writer = Grid::Hdf5Writer;
|
|
static const char * FileExtension = ".h5";
|
|
#else
|
|
using Default_Reader = Grid::BinaryReader;
|
|
using Default_Writer = Grid::BinaryWriter;
|
|
static const char * FileExtension = ".dat";
|
|
#endif
|
|
|
|
/******************************************************************************
|
|
Case insensitive compare of two strings
|
|
******************************************************************************/
|
|
|
|
bool CompareCaseInsensitive( const std::string &s1, const std::string &s2 ) {
|
|
auto Len = s1.size();
|
|
bool bSame{ Len == s2.size() };
|
|
for( int j = 0; bSame && j < Len; j++ ) {
|
|
wchar_t c1 = s1[j];
|
|
if( c1 >= 'a' && c1 <= 'z' )
|
|
c1 -= 'a' - 'A';
|
|
wchar_t c2 = s2[j];
|
|
if( c2 >= 'a' && c1 <= 'z' )
|
|
c2 -= 'a' - 'A';
|
|
bSame = ( c1 == c2 );
|
|
}
|
|
return bSame;
|
|
}
|
|
|
|
/******************************************************************************
|
|
NamedTensor object
|
|
This is an Eigen::Tensor of type Scalar_ and rank NumIndices_ (row-major order)
|
|
They can be persisted to disk
|
|
Scalar_ objects are assumed to be composite objects of size Endian_Scalar_Size.
|
|
(Disable big-endian by setting Endian_Scalar_Size=1).
|
|
NB: Endian_Scalar_Size will disappear when ReadBinary & WriteBinary retired
|
|
IndexNames contains one name for each index, and IndexNames are validated on load.
|
|
WHAT TO SAVE / VALIDATE ON LOAD (Override to warn instead of assert on load)
|
|
Ensemble string
|
|
Configuration number
|
|
Noise unique string
|
|
Distillation parameters
|
|
|
|
******************************************************************************/
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_ = sizeof(Scalar_)>
|
|
class NamedTensor : Serializable
|
|
{
|
|
public:
|
|
using Scalar = Scalar_;
|
|
static constexpr int NumIndices = NumIndices_;
|
|
static constexpr uint16_t Endian_Scalar_Size = Endian_Scalar_Size_;
|
|
using ET = Eigen::Tensor<Scalar_, NumIndices_, Eigen::RowMajor>;
|
|
using Index = typename ET::Index;
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(NamedTensor
|
|
, ET, tensor
|
|
, std::vector<std::string>, IndexNames
|
|
);
|
|
public:
|
|
// Named tensors are intended to be a superset of Eigen tensor
|
|
inline operator ET&() { return tensor; }
|
|
template<typename... IndexTypes>
|
|
inline const Scalar_& operator()(const std::array<Eigen::Index, NumIndices_> &Indices) const
|
|
{ return tensor.operator()(Indices); }
|
|
inline Scalar_& operator()(const std::array<Eigen::Index, NumIndices_> &Indices)
|
|
{ return tensor.operator()(Indices); }
|
|
template<typename... IndexTypes>
|
|
inline const Scalar_& operator()(Eigen::Index firstDimension, IndexTypes... otherDimensions) const
|
|
{
|
|
// The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
|
|
assert(sizeof...(otherDimensions) + 1 == NumIndices_ && "NamedTensor: dimensions != tensor rank");
|
|
return tensor.operator()(std::array<Eigen::Index, NumIndices_>{{firstDimension, otherDimensions...}});
|
|
}
|
|
template<typename... IndexTypes>
|
|
inline Scalar_& operator()(Eigen::Index firstDimension, IndexTypes... otherDimensions)
|
|
{
|
|
// The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
|
|
assert(sizeof...(otherDimensions) + 1 == NumIndices_ && "NamedTensor: dimensions != tensor rank");
|
|
return tensor.operator()(std::array<Eigen::Index, NumIndices_>{{firstDimension, otherDimensions...}});
|
|
}
|
|
|
|
// Construct a named tensor explicitly specifying size of each dimension
|
|
template<typename... IndexTypes>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NamedTensor(const std::array<std::string,NumIndices_> &IndexNames_, Eigen::Index firstDimension, IndexTypes... otherDimensions)
|
|
: tensor(firstDimension, otherDimensions...), IndexNames{NumIndices}
|
|
{
|
|
// The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
|
|
assert(sizeof...(otherDimensions) + 1 == NumIndices_ && "NamedTensor: dimensions != tensor rank");
|
|
for( int i = 0; i < NumIndices_; i++ )
|
|
IndexNames[i] = IndexNames_[i];
|
|
}
|
|
|
|
// Default constructor (assumes tensor will be loaded from file)
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NamedTensor() : IndexNames{NumIndices_} {}
|
|
|
|
// Construct a named tensor without specifying size of each dimension (because it will be loaded from file)
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NamedTensor(const std::array<std::string,NumIndices_> &IndexNames_)
|
|
: IndexNames{NumIndices_}
|
|
{
|
|
for( int i = 0; i < NumIndices_; i++ )
|
|
IndexNames[i] = IndexNames_[i];
|
|
}
|
|
|
|
// Share data for timeslices we calculated with other nodes
|
|
inline void SliceShare( GridCartesian * gridLowDim, GridCartesian * gridHighDim ) {
|
|
Grid::SliceShare( gridLowDim, gridHighDim, tensor.data(), (int) (tensor.size() * sizeof(Scalar_)));
|
|
}
|
|
|
|
bool ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const;
|
|
|
|
// Read/Write in any format
|
|
template<typename Reader> inline void read (Reader &r, const char * pszTag = nullptr);
|
|
template<typename Writer> inline void write(Writer &w, const char * pszTag = nullptr) const;
|
|
// Read/Write in default format, i.e. HDF5 if present, else binary
|
|
inline void read (const char * filename, const char * pszTag = nullptr);
|
|
inline void write(const char * filename, const char * pszTag = nullptr) const;
|
|
// Original I/O implementation. This will be removed when we're sure it's no longer needed
|
|
EIGEN_DEPRECATED inline void ReadBinary (const std::string filename); // To be removed
|
|
EIGEN_DEPRECATED inline void WriteBinary(const std::string filename); // To be removed
|
|
};
|
|
|
|
// Is this a named tensor
|
|
template<typename T, typename V = void> struct is_named_tensor : public std::false_type {};
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size_>> : public std::true_type {};
|
|
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices, T::Endian_Scalar_Size_>, T>::value>::type> : public std::true_type {};
|
|
|
|
/******************************************************************************
|
|
PerambTensor object
|
|
Endian_Scalar_Size can be removed once (deprecated) NamedTensor::ReadBinary & WriteBinary methods deleted
|
|
******************************************************************************/
|
|
|
|
//template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size = sizeof(Scalar_)>
|
|
using PerambTensor = NamedTensor<SpinVector, 6, sizeof(Real)>;
|
|
static const std::array<std::string, 6> PerambIndexNames{"nT", "nVec", "LI", "nNoise", "nT_inv", "SI"};
|
|
|
|
/******************************************************************************
|
|
Save NamedTensor binary format (NB: On-disk format is Big Endian)
|
|
Assumes the Scalar_ objects are contiguous (no padding)
|
|
******************************************************************************/
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::WriteBinary(const std::string filename) {
|
|
LOG(Message) << "Writing NamedTensor to \"" << filename << "\"" << std::endl;
|
|
std::ofstream w(filename, std::ios::binary);
|
|
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
|
|
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
|
|
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
|
|
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
|
|
// Size of the data (in bytes)
|
|
const uint32_t Scalar_Size{sizeof(Scalar_)};
|
|
const auto NumElements = tensor.size();
|
|
const std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
|
|
uint64_t u64 = htobe64(static_cast<uint64_t>(TotalDataSize));
|
|
w.write(reinterpret_cast<const char *>(&u64), sizeof(u64));
|
|
// Size of a Scalar_
|
|
uint32_t u32{htobe32(Scalar_Size)};
|
|
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
|
|
// Endian_Scalar_Size
|
|
uint16_t u16{htobe16(Endian_Scalar_Size)};
|
|
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
|
// number of dimensions which aren't 1
|
|
u16 = static_cast<uint16_t>(this->NumIndices);
|
|
for( auto dim : tensor.dimensions() )
|
|
if( dim == 1 )
|
|
u16--;
|
|
u16 = htobe16( u16 );
|
|
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
|
// dimensions together with names
|
|
int d = 0;
|
|
for( auto dim : tensor.dimensions() ) {
|
|
if( dim != 1 ) {
|
|
// size of this dimension
|
|
u16 = htobe16( static_cast<uint16_t>( dim ) );
|
|
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
|
// length of this dimension name
|
|
u16 = htobe16( static_cast<uint16_t>( IndexNames[d].size() ) );
|
|
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
|
// dimension name
|
|
w.write(IndexNames[d].c_str(), IndexNames[d].size());
|
|
}
|
|
d++;
|
|
}
|
|
// Actual data
|
|
char * const pStart{reinterpret_cast<char *>(tensor.data())};
|
|
// Swap to network byte order in place (alternative is to copy memory - still slow)
|
|
void * const pEnd{pStart + TotalDataSize};
|
|
if(Endian_Scalar_Size == 8)
|
|
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = htobe64( * p );
|
|
else if(Endian_Scalar_Size == 4)
|
|
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = htobe32( * p );
|
|
else if(Endian_Scalar_Size == 2)
|
|
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = htobe16( * p );
|
|
w.write(pStart, TotalDataSize);
|
|
// Swap back from network byte order
|
|
if(Endian_Scalar_Size == 8)
|
|
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = be64toh( * p );
|
|
else if(Endian_Scalar_Size == 4)
|
|
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = be32toh( * p );
|
|
else if(Endian_Scalar_Size == 2)
|
|
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = be16toh( * p );
|
|
// checksum
|
|
#ifdef USE_IPP
|
|
u32 = htobe32(GridChecksum::crc32c(tensor.data(), TotalDataSize));
|
|
#else
|
|
u32 = htobe32(GridChecksum::crc32(tensor.data(), TotalDataSize));
|
|
#endif
|
|
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
|
|
}
|
|
|
|
/******************************************************************************
|
|
Load NamedTensor binary format (NB: On-disk format is Big Endian)
|
|
Assumes the Scalar_ objects are contiguous (no padding)
|
|
******************************************************************************/
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ReadBinary(const std::string filename) {
|
|
LOG(Message) << "Reading NamedTensor from \"" << filename << "\"" << std::endl;
|
|
std::ifstream r(filename, std::ios::binary);
|
|
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
|
|
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
|
|
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
|
|
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
|
|
// Size of the data in bytes
|
|
const uint32_t Scalar_Size{sizeof(Scalar_)};
|
|
Index NumElements{tensor.size()};
|
|
std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
|
|
uint64_t u64;
|
|
r.read(reinterpret_cast<char *>(&u64), sizeof(u64));
|
|
assert( TotalDataSize == 0 || TotalDataSize == be64toh( u64 ) && "NamedTensor error: Size of the data in bytes" );
|
|
// Size of a Scalar_
|
|
uint32_t u32;
|
|
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
|
|
assert( Scalar_Size == be32toh( u32 ) && "NamedTensor error: sizeof(Scalar_)");
|
|
// Endian_Scalar_Size
|
|
uint16_t u16;
|
|
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
|
assert( Endian_Scalar_Size == be16toh( u16 ) && "NamedTensor error: Scalar_Unit_size");
|
|
// number of dimensions which aren't 1
|
|
uint16_t NumFileDimensions;
|
|
r.read(reinterpret_cast<char *>(&NumFileDimensions), sizeof(NumFileDimensions));
|
|
NumFileDimensions = be16toh( NumFileDimensions );
|
|
/*for( auto dim : tensor.dimensions() )
|
|
if( dim == 1 )
|
|
u16++;*/
|
|
assert( ( TotalDataSize == 0 && this->NumIndices >= NumFileDimensions || this->NumIndices == NumFileDimensions )
|
|
&& "NamedTensor error: number of dimensions which aren't 1" );
|
|
if( TotalDataSize == 0 ) {
|
|
// Read each dimension, using names to skip past dimensions == 1
|
|
std::array<Index,NumIndices_> NewDimensions;
|
|
for( Index &i : NewDimensions ) i = 1;
|
|
int d = 0;
|
|
for( int FileDimension = 0; FileDimension < NumFileDimensions; FileDimension++ ) {
|
|
// read dimension
|
|
uint16_t thisDim;
|
|
r.read(reinterpret_cast<char *>(&thisDim), sizeof(thisDim));
|
|
// read dimension name
|
|
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
|
size_t l = be16toh( u16 );
|
|
std::string s( l, '?' );
|
|
r.read(&s[0], l);
|
|
// skip forward to matching name
|
|
while( IndexNames[d].size() > 0 && !CompareCaseInsensitive( s, IndexNames[d] ) )
|
|
assert(++d < NumIndices && "NamedTensor error: dimension name" );
|
|
if( IndexNames[d].size() == 0 )
|
|
IndexNames[d] = s;
|
|
NewDimensions[d++] = be16toh( thisDim );
|
|
}
|
|
tensor.resize(NewDimensions);
|
|
NumElements = 1;
|
|
for( Index i : NewDimensions ) NumElements *= i;
|
|
TotalDataSize = NumElements * Scalar_Size;
|
|
} else {
|
|
// dimensions together with names
|
|
const auto & TensorDims = tensor.dimensions();
|
|
for( int d = 0; d < NumIndices_; d++ ) {
|
|
// size of dimension
|
|
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
|
u16 = be16toh( u16 );
|
|
assert( TensorDims[d] == u16 && "size of dimension" );
|
|
// length of dimension name
|
|
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
|
size_t l = be16toh( u16 );
|
|
assert( l == IndexNames[d].size() && "NamedTensor error: length of dimension name" );
|
|
// dimension name
|
|
std::string s( l, '?' );
|
|
r.read(&s[0], l);
|
|
assert( s == IndexNames[d] && "NamedTensor error: dimension name" );
|
|
}
|
|
}
|
|
// Actual data
|
|
char * const pStart{reinterpret_cast<char *>(tensor.data())};
|
|
void * const pEnd{pStart + TotalDataSize};
|
|
r.read(pStart,TotalDataSize);
|
|
// Swap back from network byte order
|
|
if(Endian_Scalar_Size == 8)
|
|
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = be64toh( * p );
|
|
else if(Endian_Scalar_Size == 4)
|
|
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = be32toh( * p );
|
|
else if(Endian_Scalar_Size == 2)
|
|
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
|
|
* p = be16toh( * p );
|
|
// checksum
|
|
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
|
|
u32 = be32toh( u32 );
|
|
#ifdef USE_IPP
|
|
u32 -= GridChecksum::crc32c(tensor.data(), TotalDataSize);
|
|
#else
|
|
u32 -= GridChecksum::crc32(tensor.data(), TotalDataSize);
|
|
#endif
|
|
assert( u32 == 0 && "NamedTensor error: PerambTensor checksum invalid");
|
|
}
|
|
|
|
/******************************************************************************
|
|
Write NamedTensor
|
|
******************************************************************************/
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
template<typename Writer>
|
|
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(Writer &w, const char * pszTag)const{
|
|
if( pszTag == nullptr )
|
|
pszTag = "NamedTensor";
|
|
LOG(Message) << "Writing NamedTensor to tag " << pszTag << std::endl;
|
|
write(w, pszTag, *this);
|
|
}
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * filename, const char * pszTag)const{
|
|
std::string sFileName{filename};
|
|
sFileName.append( MDistil::FileExtension );
|
|
LOG(Message) << "Writing NamedTensor to file " << sFileName << std::endl;
|
|
MDistil::Default_Writer w( sFileName );
|
|
write( w, pszTag );
|
|
}
|
|
|
|
/******************************************************************************
|
|
Validate named tensor index names
|
|
******************************************************************************/
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
|
|
bool bSame{ iNumNames == NumIndices_ && IndexNames.size() == NumIndices_ };
|
|
for( int i = 0; bSame && i < NumIndices_; i++ )
|
|
bSame = CompareCaseInsensitive( MatchNames[i], IndexNames[i] );
|
|
return bSame;
|
|
}
|
|
|
|
/******************************************************************************
|
|
Read NamedTensor
|
|
******************************************************************************/
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
template<typename Reader>
|
|
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, const char * pszTag) {
|
|
if( pszTag == nullptr )
|
|
pszTag = "NamedTensor";
|
|
// Grab index names and dimensions
|
|
std::vector<std::string> OldIndexNames{std::move(IndexNames)};
|
|
typename ET::Dimensions OldDimensions{tensor.dimensions()};
|
|
LOG(Message) << "Reading NamedTensor from tag " << pszTag << std::endl;
|
|
read(r, pszTag, *this);
|
|
const typename ET::Dimensions & NewDimensions{tensor.dimensions()};
|
|
for( int i = 0; i < NumIndices_; i++ )
|
|
assert(OldDimensions[i] == 0 || OldDimensions[i] == NewDimensions[i] && "NamedTensor::load dimension size");
|
|
assert( ValidateIndexNames( OldIndexNames.size(), &OldIndexNames[0] ) && "NamedTensor::load dimension name" );
|
|
}
|
|
|
|
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
|
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(const char * filename, const char * pszTag) {
|
|
std::string sFileName{filename};
|
|
sFileName.append( MDistil::FileExtension );
|
|
LOG(Message) << "Reading NamedTensor from file " << sFileName << std::endl;
|
|
MDistil::Default_Reader r( sFileName );
|
|
read( r, pszTag );
|
|
}
|
|
|
|
/******************************************************************************
|
|
Make a lower dimensional grid in preparation for local slice operations
|
|
******************************************************************************/
|
|
|
|
inline GridCartesian * MakeLowerDimGrid( GridCartesian * gridHD )
|
|
{
|
|
int nd{static_cast<int>(gridHD->_ndimension)};
|
|
std::vector<int> latt_size = gridHD->_gdimensions;
|
|
latt_size[nd-1] = 1;
|
|
std::vector<int> simd_layout = GridDefaultSimd(nd-1, vComplex::Nsimd());
|
|
simd_layout.push_back( 1 );
|
|
std::vector<int> mpi_layout = gridHD->_processors;
|
|
mpi_layout[nd-1] = 1;
|
|
GridCartesian * gridLD = new GridCartesian(latt_size,simd_layout,mpi_layout,*gridHD);
|
|
return gridLD;
|
|
}
|
|
|
|
/*************************************************************************************
|
|
Rotate eigenvectors into our phase convention
|
|
First component of first eigenvector is real and positive
|
|
*************************************************************************************/
|
|
|
|
inline void RotateEigen(std::vector<LatticeColourVector> & evec)
|
|
{
|
|
ColourVector cv0;
|
|
auto grid = evec[0]._grid;
|
|
std::vector<int> siteFirst(grid->Nd(),0);
|
|
peekSite(cv0, evec[0], siteFirst);
|
|
auto & cplx0 = cv0()()(0);
|
|
if( std::imag(cplx0) == 0 )
|
|
std::cout << GridLogMessage << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl;
|
|
else {
|
|
const auto cplx0_mag = std::abs(cplx0);
|
|
const auto phase = std::conj(cplx0 / cplx0_mag);
|
|
std::cout << GridLogMessage << "RotateEigen() : Site 0 : |" << cplx0 << "|=" << cplx0_mag << " => phase=" << (std::arg(phase) / 3.14159265) << " pi" << std::endl;
|
|
{
|
|
// TODO: Only really needed on the master slice
|
|
for( int k = 0 ; k < evec.size() ; k++ )
|
|
evec[k] *= phase;
|
|
if(grid->IsBoss()){
|
|
for( int c = 0 ; c < Nc ; c++ )
|
|
cv0()()(c) *= phase;
|
|
cplx0.imag(0); // This assumes phase convention is real, positive (so I get rid of rounding error)
|
|
//pokeSite(cv0, evec[0], siteFirst);
|
|
pokeLocalSite(cv0, evec[0], siteFirst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
END_MODULE_NAMESPACE
|
|
END_HADRONS_NAMESPACE
|
|
#endif // Hadrons_MDistil_Distil_hpp_
|