1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/communicator/Communicator_shmem.cc
Peter Boyle 6aeaf6f568 Parallel IO worked on. I'm puzzled because I already thought I shook this out on MacOS + OpenMPI and then
turned up problems on the BlueWaters Cray.

Gets 75MB/s from home filesystem on parallel configuration read. Need to make the RNG IO parallel,
and also to look at aggregating bigger writes for the parallel write.
Not sure what the home filesystem is.
2016-02-21 08:03:21 -06:00

319 lines
8.7 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_shmem.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include "Grid.h"
#include <mpp/shmem.h>
namespace Grid {
// Should error check all MPI calls.
#define SHMEM_VET(addr)
#define SHMEM_VET_DEBUG(addr) { \
if ( ! shmem_addr_accessible(addr,_processor) ) {\
std::fprintf(stderr,"%d Inaccessible shmem address %lx %s %s\n",_processor,addr,__FUNCTION__,#addr); \
BACKTRACEFILE(); \
}\
}
int Rank(void) {
return shmem_my_pe();
}
typedef struct HandShake_t {
uint64_t seq_local;
uint64_t seq_remote;
} HandShake;
static Vector< HandShake > XConnections;
static Vector< HandShake > RConnections;
void CartesianCommunicator::Init(int *argc, char ***argv) {
shmem_init();
XConnections.resize(shmem_n_pes());
RConnections.resize(shmem_n_pes());
for(int pe =0 ; pe<shmem_n_pes();pe++){
XConnections[pe].seq_local = 0;
XConnections[pe].seq_remote= 0;
RConnections[pe].seq_local = 0;
RConnections[pe].seq_remote= 0;
}
shmem_barrier_all();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();
std::vector<int> periodic(_ndimension,1);
_Nprocessors=1;
_processors = processors;
_processor_coor.resize(_ndimension);
_processor = shmem_my_pe();
Lexicographic::CoorFromIndex(_processor_coor,_processor,_processors);
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
int Size = shmem_n_pes();
assert(Size==_Nprocessors);
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
static long long source ;
static long long dest ;
static long long llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
// int nreduce=1;
// int pestart=0;
// int logStride=0;
source = u;
dest = 0;
shmem_longlong_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
shmem_barrier_all(); // necessary?
u = dest;
}
void CartesianCommunicator::GlobalSum(float &f){
static float source ;
static float dest ;
static float llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
source = f;
dest =0.0;
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
f = dest;
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
static float source ;
static float dest = 0 ;
static float llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
if ( shmem_addr_accessible(f,_processor) ){
shmem_float_sum_to_all(f,f,N,0,0,_Nprocessors,llwrk,psync);
return;
}
for(int i=0;i<N;i++){
dest =0.0;
source = f[i];
shmem_float_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
f[i] = dest;
}
}
void CartesianCommunicator::GlobalSum(double &d)
{
static double source;
static double dest ;
static double llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
source = d;
dest = 0;
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
d = dest;
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
static double source ;
static double dest ;
static double llwrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
if ( shmem_addr_accessible(d,_processor) ){
shmem_double_sum_to_all(d,d,N,0,0,_Nprocessors,llwrk,psync);
return;
}
for(int i=0;i<N;i++){
source = d[i];
dest =0.0;
shmem_double_sum_to_all(&dest,&source,1,0,0,_Nprocessors,llwrk,psync);
d[i] = dest;
}
}
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
std::vector<int> coor = _processor_coor;
assert(std::abs(shift) <_processors[dim]);
coor[dim] = (_processor_coor[dim] + shift + _processors[dim])%_processors[dim];
Lexicographic::IndexFromCoor(coor,source,_processors);
coor[dim] = (_processor_coor[dim] - shift + _processors[dim])%_processors[dim];
Lexicographic::IndexFromCoor(coor,dest,_processors);
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
Lexicographic::IndexFromCoor(coor,rank,_processors);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
Lexicographic::CoorFromIndex(coor,rank,_processors);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
SHMEM_VET(xmit);
SHMEM_VET(recv);
std::vector<CommsRequest_t> reqs(0);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
static uint64_t seq;
assert(recv!=xmit);
volatile HandShake *RecvSeq = (volatile HandShake *) & RConnections[sender];
volatile HandShake *SendSeq = (volatile HandShake *) & XConnections[receiver];
if ( _processor == sender ) {
printf("Sender SHMEM pt2pt %d -> %d\n",sender,receiver);
// Check he has posted a receive
while(SendSeq->seq_remote == SendSeq->seq_local);
printf("Sender receive %d posted\n",sender,receiver);
// Advance our send count
seq = ++(SendSeq->seq_local);
// Send this packet
SHMEM_VET(recv);
shmem_putmem(recv,xmit,bytes,receiver);
shmem_fence();
printf("Sender sent payload %d\n",seq);
//Notify him we're done
shmem_putmem((void *)&(RecvSeq->seq_remote),&seq,sizeof(seq),receiver);
shmem_fence();
printf("Sender ringing door bell %d\n",seq);
}
if ( _processor == receiver ) {
printf("Receiver SHMEM pt2pt %d->%d\n",sender,receiver);
// Post a receive
seq = ++(RecvSeq->seq_local);
shmem_putmem((void *)&(SendSeq->seq_remote),&seq,sizeof(seq),sender);
printf("Receiver Opening letter box %d\n",seq);
// Now wait until he has advanced our reception counter
while(RecvSeq->seq_remote != RecvSeq->seq_local);
printf("Receiver Got the mail %d\n",seq);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
SHMEM_VET(xmit);
SHMEM_VET(recv);
// shmem_putmem_nb(recv,xmit,bytes,dest,NULL);
shmem_putmem(recv,xmit,bytes,dest);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
// shmem_quiet(); // I'm done
shmem_barrier_all();// He's done too
}
void CartesianCommunicator::Barrier(void)
{
shmem_barrier_all();
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
static uint32_t word;
uint32_t *array = (uint32_t *) data;
assert( (bytes % 4)==0);
int words = bytes/4;
if ( shmem_addr_accessible(data,_processor) ){
shmem_broadcast32(data,data,words,root,0,0,shmem_n_pes(),psync);
return;
}
for(int w=0;w<words;w++){
word = array[w];
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync);
if ( shmem_my_pe() != root ) {
array[w] = word;
}
shmem_barrier_all();
}
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
static uint32_t word;
uint32_t *array = (uint32_t *) data;
assert( (bytes % 4)==0);
int words = bytes/4;
for(int w=0;w<words;w++){
word = array[w];
shmem_broadcast32((void *)&word,(void *)&word,1,root,0,0,shmem_n_pes(),psync);
if ( shmem_my_pe() != root ) {
array[w]= word;
}
shmem_barrier_all();
}
}
}