mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-16 02:35:36 +00:00
265 lines
11 KiB
C++
265 lines
11 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
|
|
|
|
Copyright (C) 2017
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: David Murphy <dmurphy@phys.columbia.edu>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// Implementation of exact one flavour algorithm (EOFA) //
|
|
// using fermion classes defined in: //
|
|
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
|
|
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
|
|
// arXiv: 1403.1683, 1706.05843 //
|
|
/////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
|
|
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
|
|
|
|
namespace Grid{
|
|
namespace QCD{
|
|
|
|
///////////////////////////////////////////////////////////////
|
|
// Exact one flavour implementation of DWF determinant ratio //
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
template<class Impl>
|
|
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
|
{
|
|
public:
|
|
INHERIT_IMPL_TYPES(Impl);
|
|
typedef OneFlavourRationalParams Params;
|
|
Params param;
|
|
MultiShiftFunction PowerNegHalf;
|
|
|
|
private:
|
|
bool use_heatbath_forecasting;
|
|
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
|
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
|
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
|
|
FermionField Phi; // the pseudofermion field for this trajectory
|
|
|
|
public:
|
|
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
|
|
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
|
|
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
|
|
{
|
|
AlgRemez remez(param.lo, param.hi, param.precision);
|
|
|
|
// MdagM^(+- 1/2)
|
|
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
|
|
remez.generateApprox(param.degree, 1, 2);
|
|
PowerNegHalf.Init(remez, param.tolerance, true);
|
|
};
|
|
|
|
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
|
|
|
virtual std::string LogParameters() {
|
|
std::stringstream sstream;
|
|
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
|
|
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
|
|
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
|
|
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
|
|
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
|
|
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
|
|
return sstream.str();
|
|
}
|
|
|
|
// Spin projection
|
|
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
|
|
{
|
|
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
|
|
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
|
}
|
|
|
|
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
|
// We generate a Gaussian noise vector \eta, and then compute
|
|
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
|
// using a rational approximation to the inverse square root
|
|
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
|
|
{
|
|
Lop.ImportGauge(U);
|
|
Rop.ImportGauge(U);
|
|
|
|
FermionField eta (Lop.FermionGrid());
|
|
FermionField CG_src (Lop.FermionGrid());
|
|
FermionField CG_soln (Lop.FermionGrid());
|
|
FermionField Forecast_src(Lop.FermionGrid());
|
|
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
|
|
|
// Use chronological inverter to forecast solutions across poles
|
|
std::vector<FermionField> prev_solns;
|
|
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
|
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
|
|
|
// Seed with Gaussian noise vector (var = 0.5)
|
|
RealD scale = std::sqrt(0.5);
|
|
gaussian(pRNG,eta);
|
|
eta = eta * scale;
|
|
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
|
|
|
|
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
|
RealD N(PowerNegHalf.norm);
|
|
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
|
Phi = eta * N;
|
|
|
|
// LH terms:
|
|
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
|
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
|
RealD gamma_l(0.0);
|
|
spProj(eta, tmp[0], -1, Lop.Ls);
|
|
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
|
G5R5(CG_src, tmp[1]);
|
|
tmp[1] = zero;
|
|
for(int k=0; k<param.degree; ++k){
|
|
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
|
Lop.RefreshShiftCoefficients(-gamma_l);
|
|
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
|
Lop.Mdag(CG_src, Forecast_src);
|
|
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
|
Solver(Lop, CG_src, CG_soln);
|
|
prev_solns.push_back(CG_soln);
|
|
} else {
|
|
CG_soln = zero; // Just use zero as the initial guess
|
|
Solver(Lop, CG_src, CG_soln);
|
|
}
|
|
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
|
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
|
}
|
|
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
|
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
|
Phi = Phi + tmp[1];
|
|
|
|
// RH terms:
|
|
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
|
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
|
spProj(eta, tmp[0], 1, Rop.Ls);
|
|
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
|
G5R5(CG_src, tmp[1]);
|
|
tmp[1] = zero;
|
|
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
|
for(int k=0; k<param.degree; ++k){
|
|
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
|
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
|
if(use_heatbath_forecasting){
|
|
Rop.Mdag(CG_src, Forecast_src);
|
|
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
|
Solver(Rop, CG_src, CG_soln);
|
|
prev_solns.push_back(CG_soln);
|
|
} else {
|
|
CG_soln = zero;
|
|
Solver(Rop, CG_src, CG_soln);
|
|
}
|
|
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
|
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
|
}
|
|
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
|
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
|
Phi = Phi + tmp[1];
|
|
|
|
// Reset shift coefficients for energy and force evals
|
|
Lop.RefreshShiftCoefficients(0.0);
|
|
Rop.RefreshShiftCoefficients(-1.0);
|
|
};
|
|
|
|
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
|
virtual RealD S(const GaugeField& U)
|
|
{
|
|
Lop.ImportGauge(U);
|
|
Rop.ImportGauge(U);
|
|
|
|
FermionField spProj_Phi(Lop.FermionGrid());
|
|
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
|
|
|
// S = <\Phi|\Phi>
|
|
RealD action(norm2(Phi));
|
|
|
|
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
|
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
|
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
|
G5R5(tmp[1], tmp[0]);
|
|
tmp[0] = zero;
|
|
Solver(Lop, tmp[1], tmp[0]);
|
|
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
|
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
|
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
|
|
|
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
|
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
|
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
|
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
|
G5R5(tmp[1], tmp[0]);
|
|
tmp[0] = zero;
|
|
Solver(Rop, tmp[1], tmp[0]);
|
|
Rop.Dtilde(tmp[0], tmp[1]);
|
|
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
|
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
|
|
|
return action;
|
|
};
|
|
|
|
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
|
|
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
|
|
{
|
|
Lop.ImportGauge(U);
|
|
Rop.ImportGauge(U);
|
|
|
|
FermionField spProj_Phi (Lop.FermionGrid());
|
|
FermionField Omega_spProj_Phi(Lop.FermionGrid());
|
|
FermionField CG_src (Lop.FermionGrid());
|
|
FermionField Chi (Lop.FermionGrid());
|
|
FermionField g5_R5_Chi (Lop.FermionGrid());
|
|
|
|
GaugeField force(Lop.GaugeGrid());
|
|
|
|
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
|
|
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
|
|
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
|
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
|
|
G5R5(CG_src, Omega_spProj_Phi);
|
|
spProj_Phi = zero;
|
|
Solver(Lop, CG_src, spProj_Phi);
|
|
Lop.Dtilde(spProj_Phi, Chi);
|
|
G5R5(g5_R5_Chi, Chi);
|
|
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
|
dSdU = Lop.k * force;
|
|
|
|
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
|
|
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
|
|
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
|
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
|
|
G5R5(CG_src, Omega_spProj_Phi);
|
|
spProj_Phi = zero;
|
|
Solver(Rop, CG_src, spProj_Phi);
|
|
Rop.Dtilde(spProj_Phi, Chi);
|
|
G5R5(g5_R5_Chi, Chi);
|
|
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
|
|
dSdU = dSdU - Rop.k * force;
|
|
};
|
|
};
|
|
}}
|
|
|
|
#endif
|