mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 17:55:38 +00:00
198 lines
5.7 KiB
C++
198 lines
5.7 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/pseudofermion/OneFlavourRational.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
|
|
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_RATIONAL_H
|
|
|
|
namespace Grid{
|
|
namespace QCD{
|
|
|
|
///////////////////////////////////////
|
|
// One flavour rational
|
|
///////////////////////////////////////
|
|
|
|
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
|
|
//
|
|
// Here, M is some operator
|
|
// N and D makeup the rat. poly
|
|
//
|
|
|
|
template<class Impl>
|
|
class OneFlavourRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
|
public:
|
|
INHERIT_IMPL_TYPES(Impl);
|
|
|
|
typedef OneFlavourRationalParams Params;
|
|
Params param;
|
|
|
|
MultiShiftFunction PowerHalf ;
|
|
MultiShiftFunction PowerNegHalf;
|
|
MultiShiftFunction PowerQuarter;
|
|
MultiShiftFunction PowerNegQuarter;
|
|
|
|
private:
|
|
|
|
FermionOperator<Impl> & FermOp;// the basic operator
|
|
|
|
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us historically
|
|
// and hasenbusch works better
|
|
|
|
FermionField Phi; // the pseudo fermion field for this trajectory
|
|
|
|
public:
|
|
|
|
OneFlavourRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
|
Params & p
|
|
) : FermOp(Op), Phi(Op.FermionGrid()), param(p)
|
|
{
|
|
AlgRemez remez(param.lo,param.hi,param.precision);
|
|
|
|
// MdagM^(+- 1/2)
|
|
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
|
remez.generateApprox(param.degree,1,2);
|
|
PowerHalf.Init(remez,param.tolerance,false);
|
|
PowerNegHalf.Init(remez,param.tolerance,true);
|
|
|
|
// MdagM^(+- 1/4)
|
|
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
|
remez.generateApprox(param.degree,1,4);
|
|
PowerQuarter.Init(remez,param.tolerance,false);
|
|
PowerNegQuarter.Init(remez,param.tolerance,true);
|
|
};
|
|
|
|
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
|
|
|
// P(phi) = e^{- phi^dag (MdagM)^-1/2 phi}
|
|
// = e^{- phi^dag (MdagM)^-1/4 (MdagM)^-1/4 phi}
|
|
// Phi = Mdag^{1/4} eta
|
|
// P(eta) = e^{- eta^dag eta}
|
|
//
|
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
|
//
|
|
// So eta should be of width sig = 1/sqrt(2).
|
|
|
|
RealD scale = std::sqrt(0.5);
|
|
|
|
FermionField eta(FermOp.FermionGrid());
|
|
|
|
gaussian(pRNG,eta);
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
// mutishift CG
|
|
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
|
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerQuarter);
|
|
msCG(MdagMOp,eta,Phi);
|
|
|
|
Phi=Phi*scale;
|
|
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
// S = phi^dag (Mdag M)^-1/2 phi
|
|
//////////////////////////////////////////////////////
|
|
virtual RealD S(const GaugeField &U) {
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
FermionField Y(FermOp.FermionGrid());
|
|
|
|
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
|
|
|
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegQuarter);
|
|
|
|
msCG(MdagMOp,Phi,Y);
|
|
|
|
RealD action = norm2(Y);
|
|
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 solve or -1/2 solve faster??? "<<action<<std::endl;
|
|
return action;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
// Need
|
|
// dS_f/dU = chi^dag d[N/D] chi
|
|
//
|
|
// N/D is expressed as partial fraction expansion:
|
|
//
|
|
// a0 + \sum_k ak/(M^dagM + bk)
|
|
//
|
|
// d[N/D] is then
|
|
//
|
|
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
|
//
|
|
// Need
|
|
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
|
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
|
//
|
|
// With these building blocks
|
|
//
|
|
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
|
// S = innerprodReal(Phi,Mf Phi);
|
|
//////////////////////////////////////////////////////
|
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
|
|
|
const int Npole = PowerNegHalf.poles.size();
|
|
|
|
std::vector<FermionField> MPhi_k (Npole,FermOp.FermionGrid());
|
|
|
|
FermionField X(FermOp.FermionGrid());
|
|
FermionField Y(FermOp.FermionGrid());
|
|
|
|
GaugeField tmp(FermOp.GaugeGrid());
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
|
|
|
|
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,PowerNegHalf);
|
|
|
|
msCG(MdagMOp,Phi,MPhi_k);
|
|
|
|
dSdU = zero;
|
|
for(int k=0;k<Npole;k++){
|
|
|
|
RealD ak = PowerNegHalf.residues[k];
|
|
|
|
X = MPhi_k[k];
|
|
|
|
FermOp.M(X,Y);
|
|
|
|
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=dSdU+ak*tmp;
|
|
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
|
|
|
}
|
|
|
|
//dSdU = Ta(dSdU);
|
|
|
|
};
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|