1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-03 02:35:55 +01:00
Grid/Grid/lattice/Lattice_transfer.h

1428 lines
42 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_transfer.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
inline void subdivides(GridBase *coarse,GridBase *fine)
{
assert(coarse->_ndimension == fine->_ndimension);
int _ndimension = coarse->_ndimension;
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<_ndimension;d++){
assert(coarse->_processors[d] == fine->_processors[d]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[d]);
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full)
{
half.Checkerboard() = cb;
autoView( half_v, half, CpuWrite);
autoView( full_v, full, CpuRead);
thread_for(ss, full.Grid()->oSites(),{
int cbos;
Coordinate coor;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
half_v[ssh] = full_v[ss];
}
});
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half)
{
int cb = half.Checkerboard();
autoView( half_v , half, CpuRead);
autoView( full_v , full, CpuWrite);
thread_for(ss,full.Grid()->oSites(),{
Coordinate coor;
int cbos;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
full_v[ss]=half_v[ssh];
}
});
}
template<class vobj> inline void acceleratorPickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full, int checker_dim_half=0)
{
half.Checkerboard() = cb;
autoView(half_v, half, AcceleratorWrite);
autoView(full_v, full, AcceleratorRead);
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss, full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++) {
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(half_v[ssh],full_v(ss));
}
});
}
template<class vobj> inline void acceleratorSetCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half, int checker_dim_half=0)
{
int cb = half.Checkerboard();
autoView(half_v , half, AcceleratorRead);
autoView(full_v , full, AcceleratorWrite);
nvtxRangePop();
Coordinate rdim_full = full.Grid()->_rdimensions;
Coordinate rdim_half = half.Grid()->_rdimensions;
unsigned long ndim_half = half.Grid()->_ndimension;
Coordinate checker_dim_mask_half = half.Grid()->_checker_dim_mask;
Coordinate ostride_half = half.Grid()->_ostride;
accelerator_for(ss,full.Grid()->oSites(),full.Grid()->Nsimd(),{
Coordinate coor;
int cbos;
int linear=0;
Lexicographic::CoorFromIndex(coor,ss,rdim_full);
assert(coor.size()==ndim_half);
for(int d=0;d<ndim_half;d++){
if(checker_dim_mask_half[d]) linear += coor[d];
}
cbos = (linear&0x1);
if (cbos==cb) {
int ssh=0;
for(int d=0;d<ndim_half;d++){
if (d == checker_dim_half) ssh += ostride_half[d] * ((coor[d] / 2) % rdim_half[d]);
else ssh += ostride_half[d] * (coor[d] % rdim_half[d]);
}
coalescedWrite(full_v[ss],half_v(ssh));
}
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types
////////////////////////////////////////////////////////////////////////////////////////////
accelerator_inline void convertType(ComplexD & out, const std::complex<double> & in) {
out = in;
}
accelerator_inline void convertType(ComplexF & out, const std::complex<float> & in) {
out = in;
}
template<typename T>
accelerator_inline EnableIf<isGridFundamental<T>> convertType(T & out, const T & in) {
out = in;
}
// This would allow for conversions between GridFundamental types, but is not strictly needed as yet
/*template<typename T1, typename T2>
accelerator_inline typename std::enable_if<isGridFundamental<T1>::value && isGridFundamental<T2>::value>::type
// Or to make this very broad, conversions between anything that's not a GridTensor could be allowed
//accelerator_inline typename std::enable_if<!isGridTensor<T1>::value && !isGridTensor<T2>::value>::type
convertType(T1 & out, const T2 & in) {
out = in;
}*/
#ifdef GRID_SIMT
accelerator_inline void convertType(vComplexF & out, const ComplexF & in) {
((ComplexF*)&out)[acceleratorSIMTlane(vComplexF::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD & out, const ComplexD & in) {
((ComplexD*)&out)[acceleratorSIMTlane(vComplexD::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
((ComplexD*)&out)[acceleratorSIMTlane(vComplexD::Nsimd()*2)] = in;
}
#endif
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
}
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
}
template<typename T1,typename T2>
accelerator_inline void convertType(iScalar<T1> & out, const iScalar<T2> & in) {
convertType(out._internal,in._internal);
}
template<typename T1,typename T2>
accelerator_inline NotEnableIf<isGridScalar<T1>> convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal);
}
template<typename T1,typename T2>
accelerator_inline NotEnableIf<isGridScalar<T2>> convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in) {
for (int i=0;i<N;i++)
for (int j=0;j<N;j++)
convertType(out._internal[i][j],in._internal[i][j]);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in) {
for (int i=0;i<N;i++)
convertType(out._internal[i],in._internal[i]);
}
template<typename T1,typename T2>
accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
autoView( out_v , out,AcceleratorWrite);
autoView( in_v , in ,AcceleratorRead);
accelerator_for(ss,out_v.size(),T1::Nsimd(),{
convertType(out_v[ss],in_v(ss));
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// precision-promoted local inner product
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs)
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View(CpuRead)[0],rhs.View(CpuRead)[0])))>>
{
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
typedef decltype(TensorRemove(innerProductD2(lhs_v[0],rhs_v[0]))) t_inner;
Lattice<iScalar<t_inner>> ret(lhs.Grid());
{
autoView(ret_v, ret,AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
convertType(ret_v[ss],innerProductD2(lhs_v(ss),rhs_v(ss)));
});
}
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////////
// block routines
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
for(int v=0;v<nbasis;v++) {
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
convertType(coarseData_[sc](v),ip_[sc]);
});
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
ip=-ip;
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
}
}
template<class vobj,class vobj2,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<CComplex> &coarseA,
const Lattice<vobj2> &fineX,
const Lattice<vobj> &fineY)
{
GridBase * fine = fineZ.Grid();
GridBase * coarse= coarseA.Grid();
fineZ.Checkerboard()=fineX.Checkerboard();
assert(fineX.Checkerboard()==fineY.Checkerboard());
subdivides(coarse,fine); // require they map
conformable(fineX,fineY);
conformable(fineX,fineZ);
int _ndimension = coarse->_ndimension;
Coordinate block_r (_ndimension);
// FIXME merge with subdivide checking routine as this is redundant
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
autoView( fineZ_ , fineZ, AcceleratorWrite);
autoView( fineX_ , fineX, AcceleratorRead);
autoView( fineY_ , fineY, AcceleratorRead);
autoView( coarseA_, coarseA, AcceleratorRead);
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
// z = A x + y
#ifdef GRID_SIMT
typename vobj2::tensor_reduced::scalar_object cA;
typename vobj::scalar_object cAx;
#else
typename vobj2::tensor_reduced cA;
vobj cAx;
#endif
convertType(cA,TensorRemove(coarseA_(sc)));
auto prod = cA*fineX_(sf);
convertType(cAx,prod);
coalescedWrite(fineZ_[sf],cAx+fineY_(sf));
});
return;
}
template<class vobj,class CComplex>
inline void blockInnerProductD(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef iScalar<decltype(TensorRemove(innerProductD2(vobj(),vobj())))> dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
// Precision promotion
fine_inner = localInnerProductD<vobj>(fineX,fineY);
blockSum(coarse_inner,fine_inner);
{
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
}
template<class vobj,class CComplex> // deprecate
inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
{
autoView( CoarseInner_ , CoarseInner, AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner, AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
}
}
template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
GridBase *coarse = ip.Grid();
Lattice<vobj> zz(fineX.Grid()); zz=Zero(); zz.Checkerboard()=fineX.Checkerboard();
blockInnerProduct(ip,fineX,fineX);
ip = pow(ip,-0.5);
blockZAXPY(fineX,ip,fineX,zz);
}
// useful in multigrid project;
// Generic name : Coarsen?
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
subdivides(coarse,fine); // require they map
int _ndimension = coarse->_ndimension;
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
int blockVol = fine->oSites()/coarse->oSites();
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( fineData_ , fineData, AcceleratorRead);
auto coarseData_p = &coarseData_[0];
auto fineData_p = &fineData_[0];
Coordinate fine_rdimensions = fine->_rdimensions;
Coordinate coarse_rdimensions = coarse->_rdimensions;
vobj zz = Zero();
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
vobj cd = zz;
for(int sb=0;sb<blockVol;sb++){
int sf;
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
cd=cd+fineData_p[sf];
}
coarseData_p[sc] = cd;
});
return;
}
template<class vobj>
inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vobj> &picked,Coordinate coor)
{
GridBase * fine = unpicked.Grid();
Lattice<vobj> zz(fine); zz.Checkerboard() = unpicked.Checkerboard();
Lattice<iScalar<vInteger> > fcoor(fine);
zz = Zero();
picked = unpicked;
for(int d=0;d<fine->_ndimension;d++){
LatticeCoordinate(fcoor,d);
int block= fine->_rdimensions[d] / coarse->_rdimensions[d];
int lo = (coor[d])*block;
int hi = (coor[d]+1)*block;
picked = where( (fcoor<hi) , picked, zz);
picked = where( (fcoor>=lo), picked, zz);
}
}
template<class CComplex,class VLattice>
inline void blockOrthonormalize(Lattice<CComplex> &ip,VLattice &Basis)
{
GridBase *coarse = ip.Grid();
GridBase *fine = Basis[0].Grid();
int nbasis = Basis.size() ;
// checks
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i].Grid(),fine);
}
for(int v=0;v<nbasis;v++) {
for(int u=0;u<v;u++) {
//Inner product & remove component
blockInnerProductD(ip,Basis[u],Basis[v]);
ip = -ip;
blockZAXPY(Basis[v],ip,Basis[u],Basis[v]);
}
blockNormalise(ip,Basis[v]);
}
}
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis) // deprecated inaccurate naming
{
blockOrthonormalize(ip,Basis);
}
#if 0
// TODO: CPU optimized version here
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i].Grid(),fine);
}
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
autoView( fineData_ , fineData, AcceleratorWrite);
autoView( coarseData_ , coarseData, AcceleratorRead);
// Loop with a cache friendly loop ordering
accelerator_for(sf,fine->oSites(),1,{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
/* auto basis_ = Basis[i], );*/
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
}
});
return;
}
#else
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
fineData=Zero();
for(int i=0;i<nbasis;i++) {
Lattice<iScalar<CComplex> > ip = PeekIndex<0>(coarseData,i);
//Lattice<CComplex> cip(coarse);
//autoView( cip_ , cip, AcceleratorWrite);
//autoView( ip_ , ip, AcceleratorRead);
//accelerator_forNB(sc,coarse->oSites(),CComplex::Nsimd(),{
// coalescedWrite(cip_[sc], ip_(sc)());
// });
//blockZAXPY<vobj,CComplex >(fineData,cip,Basis[i],fineData);
blockZAXPY(fineData,ip,Basis[i],fineData);
}
}
#endif
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
// Simd layouts need not match since we use peek/poke Local
template<class vobj,class vvobj>
void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
{
typedef typename vobj::scalar_object sobj;
typedef typename vvobj::scalar_object ssobj;
GridBase *ig = in.Grid();
GridBase *og = out.Grid();
int ni = ig->_ndimension;
int no = og->_ndimension;
assert(ni == no);
for(int d=0;d<no;d++){
assert(ig->_processors[d] == og->_processors[d]);
assert(ig->_ldimensions[d] == og->_ldimensions[d]);
assert(ig->lSites() == og->lSites());
}
autoView(in_v,in,CpuRead);
autoView(out_v,out,CpuWrite);
thread_for(idx, ig->lSites(),{
sobj s;
ssobj ss;
Coordinate lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(s,in_v,lcoor);
ss=s;
pokeLocalSite(ss,out_v,lcoor);
});
}
template<class vobj>
void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate FromLowerLeft, Coordinate ToLowerLeft, Coordinate RegionSize)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
static const int words=sizeof(vobj)/sizeof(vector_type);
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
int nd = nF;
assert(nF == nT);
for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]);
}
// the above should guarantee that the operations are local
Coordinate ldf = Fg->_ldimensions;
Coordinate rdf = Fg->_rdimensions;
Coordinate isf = Fg->_istride;
Coordinate osf = Fg->_ostride;
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
autoView( t_v , To, AcceleratorWrite);
autoView( f_v , From, AcceleratorRead);
accelerator_for(idx,Fg->lSites(),1,{
sobj s;
Coordinate Fcoor(nd);
Coordinate Tcoor(nd);
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
int in_region=1;
for(int d=0;d<nd;d++){
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
in_region=0;
}
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
}
if (in_region) {
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
scalar_type * fp = (scalar_type *)&f_v[odx_f];
scalar_type * tp = (scalar_type *)&t_v[odx_t];
for(int w=0;w<words;w++){
tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke
}
}
});
}
template<class vobj>
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl+1 == nh);
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
int dl; dl = 0;
for(int d=0;d<nh;d++){
if ( d != orthog) {
assert(lg->_processors[dl] == hg->_processors[d]);
assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
dl++;
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
});
}
template<class vobj>
void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl+1 == nh);
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
int dl; dl = 0;
for(int d=0;d<nh;d++){
if ( d != orthog) {
assert(lg->_processors[dl] == hg->_processors[d]);
assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
dl++;
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
});
}
template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuRead);
autoView(higherDimv,higherDim,CpuWrite);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDimv,lcoor);
pokeLocalSite(s,higherDimv,hcoor);
}
});
}
template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
// the above should guarantee that the operations are local
autoView(lowDimv,lowDim,CpuWrite);
autoView(higherDimv,higherDim,CpuRead);
thread_for(idx,lg->lSites(),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDimv,hcoor);
pokeLocalSite(s,lowDimv,lcoor);
}
});
}
template<class vobj>
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
{
typedef typename vobj::scalar_object sobj;
GridBase *cg = coarse.Grid();
GridBase *fg = fine.Grid();
int nd = cg->_ndimension;
subdivides(cg,fg);
assert(cg->_ndimension==fg->_ndimension);
Coordinate ratio(cg->_ndimension);
for(int d=0;d<cg->_ndimension;d++){
ratio[d] = fg->_fdimensions[d]/cg->_fdimensions[d];
}
Coordinate fcoor(nd);
Coordinate ccoor(nd);
for(int g=0;g<fg->gSites();g++){
fg->GlobalIndexToGlobalCoor(g,fcoor);
for(int d=0;d<nd;d++){
ccoor[d] = fcoor[d]%cg->_gdimensions[d];
}
sobj tmp;
peekSite(tmp,coarse,ccoor);
pokeSite(tmp,fine,fcoor);
}
}
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>::value, void>::type
unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
{
typedef typename vobj::vector_type vtype;
GridBase* in_grid = in.Grid();
out.resize(in_grid->lSites());
int ndim = in_grid->Nd();
int in_nsimd = vtype::Nsimd();
std::vector<Coordinate > in_icoor(in_nsimd);
for(int lane=0; lane < in_nsimd; lane++){
in_icoor[lane].resize(ndim);
in_grid->iCoorFromIindex(in_icoor[lane], lane);
}
//loop over outer index
autoView( in_v , in, CpuRead);
thread_for(in_oidx,in_grid->oSites(),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> out_ptrs(in_nsimd);
Coordinate in_ocoor(ndim);
in_grid->oCoorFromOindex(in_ocoor, in_oidx);
Coordinate lcoor(in_grid->Nd());
for(int lane=0; lane < in_nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = in_ocoor[mu] + in_grid->_rdimensions[mu]*in_icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
assert(lex < out.size());
out_ptrs[lane] = &out[lex];
}
//Unpack into those ptrs
const vobj & in_vobj = in_v[in_oidx];
extract(in_vobj, out_ptrs, 0);
});
}
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>::value, void>::type
unvectorizeToRevLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
{
typedef typename vobj::vector_type vtype;
GridBase* in_grid = in._grid;
out.resize(in_grid->lSites());
int ndim = in_grid->Nd();
int in_nsimd = vtype::Nsimd();
std::vector<Coordinate > in_icoor(in_nsimd);
for(int lane=0; lane < in_nsimd; lane++){
in_icoor[lane].resize(ndim);
in_grid->iCoorFromIindex(in_icoor[lane], lane);
}
thread_for(in_oidx, in_grid->oSites(),{
//Assemble vector of pointers to output elements
std::vector<sobj*> out_ptrs(in_nsimd);
Coordinate in_ocoor(ndim);
in_grid->oCoorFromOindex(in_ocoor, in_oidx);
Coordinate lcoor(in_grid->Nd());
for(int lane=0; lane < in_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
lcoor[mu] = in_ocoor[mu] + in_grid->_rdimensions[mu]*in_icoor[lane][mu];
int lex;
Lexicographic::IndexFromCoorReversed(lcoor, lex, in_grid->_ldimensions);
out_ptrs[lane] = &out[lex];
}
//Unpack into those ptrs
const vobj & in_vobj = in._odata[in_oidx];
extract1(in_vobj, out_ptrs, 0);
});
}
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value
&& !isSIMDvectorized<sobj>::value, void>::type
vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
{
typedef typename vobj::vector_type vtype;
GridBase* grid = out.Grid();
assert(in.size()==grid->lSites());
const int ndim = grid->Nd();
constexpr int nsimd = vtype::Nsimd();
std::vector<Coordinate > icoor(nsimd);
for(int lane=0; lane < nsimd; lane++){
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
autoView( out_v , out, CpuWrite);
thread_for(oidx, grid->oSites(),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> ptrs(nsimd);
Coordinate ocoor(ndim);
Coordinate lcoor(ndim);
grid->oCoorFromOindex(ocoor, oidx);
for(int lane=0; lane < nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = ocoor[mu] + grid->_rdimensions[mu]*icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, grid->_ldimensions);
ptrs[lane] = &in[lex];
}
//pack from those ptrs
vobj vecobj;
merge(vecobj, ptrs, 0);
out_v[oidx] = vecobj;
});
}
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value
&& !isSIMDvectorized<sobj>::value, void>::type
vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
{
typedef typename vobj::vector_type vtype;
GridBase* grid = out._grid;
assert(in.size()==grid->lSites());
int ndim = grid->Nd();
int nsimd = vtype::Nsimd();
std::vector<Coordinate > icoor(nsimd);
for(int lane=0; lane < nsimd; lane++){
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
thread_for(oidx, grid->oSites(), {
//Assemble vector of pointers to output elements
std::vector<sobj*> ptrs(nsimd);
Coordinate ocoor(ndim);
grid->oCoorFromOindex(ocoor, oidx);
Coordinate lcoor(grid->Nd());
for(int lane=0; lane < nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = ocoor[mu] + grid->_rdimensions[mu]*icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoorReversed(lcoor, lex, grid->_ldimensions);
ptrs[lane] = &in[lex];
}
//pack from those ptrs
vobj vecobj;
merge1(vecobj, ptrs, 0);
out._odata[oidx] = vecobj;
});
}
//Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
assert(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){
assert(out.Grid()->FullDimensions()[d] == in.Grid()->FullDimensions()[d]);
}
out.Checkerboard() = in.Checkerboard();
GridBase *in_grid=in.Grid();
GridBase *out_grid = out.Grid();
typedef typename VobjOut::scalar_object SobjOut;
typedef typename VobjIn::scalar_object SobjIn;
int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){
out_icoor[lane].resize(ndim);
out_grid->iCoorFromIindex(out_icoor[lane], lane);
}
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
autoView( out_v , out, CpuWrite);
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
Coordinate lcoor(out_grid->Nd());
for(int lane=0; lane < out_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
ptrs[lane] = &in_slex_conv[llex];
}
merge(out_v[out_oidx], ptrs, 0);
});
}
////////////////////////////////////////////////////////////////////////////////
// Communicate between grids
////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// SIMPLE CASE:
///////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
//
// Lex ord:
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
//
// Ratio = full[dim] / split[dim]
//
// For each dimension do an all to all; get Nvec -> Nvec / ratio
// Ldim -> Ldim * ratio
// LocalVol -> LocalVol * ratio
// full AllToAll(0)
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
//
// REARRANGE
// N0 va01 vb01 N1 vc01 vd01
// N2 va23 vb23 N3 vc23 vd23
//
// full AllToAll(1) // Not what is wanted. FIXME
// N0 va01 va23 N1 vc01 vc23
// N2 vb01 vb23 N3 vd01 vd23
//
// REARRANGE
// N0 va0123 N1 vc0123
// N2 vb0123 N3 vd0123
//
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
// NB: Easiest to programme if keep in lex order.
/*
* Let chunk = (fvol*nvec)/sP be size of a chunk. ( Divide lexico vol * nvec into fP/sP = M chunks )
*
* 2nd A2A (over sP nodes; subdivide the fP into sP chunks of M)
*
* node 0 1st chunk of node 0M..(1M-1); 2nd chunk of node 0M..(1M-1).. data chunk x M x sP = fL / sP * M * sP = fL * M growth
* node 1 1st chunk of node 1M..(2M-1); 2nd chunk of node 1M..(2M-1)..
* node 2 1st chunk of node 2M..(3M-1); 2nd chunk of node 2M..(3M-1)..
* node 3 1st chunk of node 3M..(3M-1); 2nd chunk of node 2M..(3M-1)..
* etc...
*/
template<class Vobj>
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
typedef typename Vobj::scalar_object Sobj;
int full_vecs = full.size();
assert(full_vecs>=1);
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
int split_nproc =split_grid->_Nprocessors;
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].Checkerboard();
split.Checkerboard() = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
uint64_t lsites = full_grid->lSites();
uint64_t sz = lsites * nvector;
std::vector<Sobj> tmpdata(sz);
std::vector<Sobj> alldata(sz);
std::vector<Sobj> scalardata(lsites);
for(int v=0;v<nvector;v++){
unvectorizeToLexOrdArray(scalardata,full[v]);
thread_for(site,lsites,{
alldata[v*lsites+site] = scalardata[site];
});
}
int nvec = nvector; // Counts down to 1 as we collapse dims
Coordinate ldims = full_grid->_ldimensions;
for(int d=ndim-1;d>=0;d--){
if ( ratio[d] != 1 ) {
full_grid ->AllToAll(d,alldata,tmpdata);
if ( split_grid->_processors[d] > 1 ) {
alldata=tmpdata;
split_grid->AllToAll(d,alldata,tmpdata);
}
auto rdims = ldims;
auto M = ratio[d];
auto rsites= lsites*M;// increases rsites by M
nvec /= M; // Reduce nvec by subdivision factor
rdims[d] *= M; // increase local dim by same factor
int sP = split_grid->_processors[d];
int fP = full_grid->_processors[d];
int fvol = lsites;
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
// Loop over reordered data post A2A
thread_for(c, chunk, {
Coordinate coor(ndim);
for(int m=0;m<M;m++){
for(int s=0;s<sP;s++){
// addressing; use lexico
int lex_r;
uint64_t lex_c = c+chunk*m+chunk*M*s;
uint64_t lex_fvol_vec = c+chunk*s;
uint64_t lex_fvol = lex_fvol_vec%fvol;
uint64_t lex_vec = lex_fvol_vec/fvol;
// which node sets an adder to the coordinate
Lexicographic::CoorFromIndex(coor, lex_fvol, ldims);
coor[d] += m*ldims[d];
Lexicographic::IndexFromCoor(coor, lex_r, rdims);
lex_r += lex_vec * rsites;
// LexicoFind coordinate & vector number within split lattice
alldata[lex_r] = tmpdata[lex_c];
}
}
});
ldims[d]*= ratio[d];
lsites *= ratio[d];
}
}
vectorizeFromLexOrdArray(alldata,split);
}
template<class Vobj>
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
{
int nvector = full.Grid()->_Nprocessors / split.Grid()->_Nprocessors;
std::vector<Lattice<Vobj> > full_v(nvector,full.Grid());
for(int n=0;n<nvector;n++){
full_v[n] = full;
}
Grid_split(full_v,split);
}
template<class Vobj>
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
typedef typename Vobj::scalar_object Sobj;
int full_vecs = full.size();
assert(full_vecs>=1);
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
int split_nproc =split_grid->_Nprocessors;
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].Checkerboard();
split.Checkerboard() = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
uint64_t lsites = full_grid->lSites();
uint64_t sz = lsites * nvector;
std::vector<Sobj> tmpdata(sz);
std::vector<Sobj> alldata(sz);
std::vector<Sobj> scalardata(lsites);
unvectorizeToLexOrdArray(alldata,split);
/////////////////////////////////////////////////////////////////
// Start from split grid and work towards full grid
/////////////////////////////////////////////////////////////////
int nvec = 1;
uint64_t rsites = split_grid->lSites();
Coordinate rdims = split_grid->_ldimensions;
for(int d=0;d<ndim;d++){
if ( ratio[d] != 1 ) {
auto M = ratio[d];
int sP = split_grid->_processors[d];
int fP = full_grid->_processors[d];
auto ldims = rdims; ldims[d] /= M; // Decrease local dims by same factor
auto lsites= rsites/M; // Decreases rsites by M
int fvol = lsites;
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
{
// Loop over reordered data post A2A
thread_for(c, chunk,{
Coordinate coor(ndim);
for(int m=0;m<M;m++){
for(int s=0;s<sP;s++){
// addressing; use lexico
int lex_r;
uint64_t lex_c = c+chunk*m+chunk*M*s;
uint64_t lex_fvol_vec = c+chunk*s;
uint64_t lex_fvol = lex_fvol_vec%fvol;
uint64_t lex_vec = lex_fvol_vec/fvol;
// which node sets an adder to the coordinate
Lexicographic::CoorFromIndex(coor, lex_fvol, ldims);
coor[d] += m*ldims[d];
Lexicographic::IndexFromCoor(coor, lex_r, rdims);
lex_r += lex_vec * rsites;
// LexicoFind coordinate & vector number within split lattice
tmpdata[lex_c] = alldata[lex_r];
}
}
});
}
if ( split_grid->_processors[d] > 1 ) {
split_grid->AllToAll(d,tmpdata,alldata);
tmpdata=alldata;
}
full_grid ->AllToAll(d,tmpdata,alldata);
rdims[d]/= M;
rsites /= M;
nvec *= M; // Increase nvec by subdivision factor
}
}
lsites = full_grid->lSites();
for(int v=0;v<nvector;v++){
thread_for(site, lsites,{
scalardata[site] = alldata[v*lsites+site];
});
vectorizeFromLexOrdArray(scalardata,full[v]);
}
}
NAMESPACE_END(Grid);