mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-12 07:00:45 +01:00
620 lines
22 KiB
C++
620 lines
22 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <pboyle@bnl.gov>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#pragma once
|
|
|
|
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
|
|
|
#include <Grid/lattice/PaddedCell.h>
|
|
#include <Grid/stencil/GeneralLocalStencil.h>
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
// Fine Object == (per site) type of fine field
|
|
// nbasis == number of deflation vectors
|
|
template<class Fobj,class CComplex,int nbasis>
|
|
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
|
public:
|
|
|
|
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
|
typedef iVector<CComplex,nbasis > siteVector;
|
|
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
|
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
|
typedef Lattice<siteVector> CoarseVector;
|
|
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
typedef iMatrix<CComplex,nbasis > Cobj;
|
|
typedef iVector<CComplex,nbasis > Cvec;
|
|
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
typedef Lattice<Fobj > FineField;
|
|
typedef Lattice<CComplex > FineComplexField;
|
|
typedef CoarseVector Field;
|
|
////////////////////
|
|
// Data members
|
|
////////////////////
|
|
int hermitian;
|
|
GridBase * _FineGrid;
|
|
GridCartesian * _CoarseGrid;
|
|
NonLocalStencilGeometry &geom;
|
|
PaddedCell Cell;
|
|
GeneralLocalStencil Stencil;
|
|
|
|
std::vector<CoarseMatrix> _A;
|
|
std::vector<CoarseMatrix> _Adag;
|
|
std::vector<CoarseVector> MultTemporaries;
|
|
|
|
///////////////////////
|
|
// Interface
|
|
///////////////////////
|
|
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
|
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
|
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
|
|
|
/* void ShiftMatrix(RealD shift)
|
|
{
|
|
int Nd=_FineGrid->Nd();
|
|
Coordinate zero_shift(Nd,0);
|
|
for(int p=0;p<geom.npoint;p++){
|
|
if ( zero_shift==geom.shifts[p] ) {
|
|
_A[p] = _A[p]+shift;
|
|
// _Adag[p] = _Adag[p]+shift;
|
|
}
|
|
}
|
|
}
|
|
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
|
{
|
|
int nfound=0;
|
|
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
|
for(int p=0;p<geom.npoint;p++){
|
|
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
|
// Search for the same relative shift
|
|
// Avoids brutal handling of Grid pointers
|
|
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
|
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
|
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
|
nfound++;
|
|
}
|
|
}
|
|
}
|
|
assert(nfound==geom.npoint);
|
|
ExchangeCoarseLinks();
|
|
}
|
|
*/
|
|
|
|
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
|
: geom(_geom),
|
|
_FineGrid(FineGrid),
|
|
_CoarseGrid(CoarseGrid),
|
|
hermitian(1),
|
|
Cell(_geom.Depth(),_CoarseGrid),
|
|
Stencil(Cell.grids.back(),geom.shifts)
|
|
{
|
|
{
|
|
int npoint = _geom.npoint;
|
|
}
|
|
_A.resize(geom.npoint,CoarseGrid);
|
|
// _Adag.resize(geom.npoint,CoarseGrid);
|
|
}
|
|
void M (const CoarseVector &in, CoarseVector &out)
|
|
{
|
|
Mult(_A,in,out);
|
|
}
|
|
void Mdag (const CoarseVector &in, CoarseVector &out)
|
|
{
|
|
assert(hermitian);
|
|
Mult(_A,in,out);
|
|
// if ( hermitian ) M(in,out);
|
|
// else Mult(_Adag,in,out);
|
|
}
|
|
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
|
{
|
|
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
|
|
RealD tmult2=0;
|
|
|
|
ttot=-usecond();
|
|
conformable(CoarseGrid(),in.Grid());
|
|
conformable(in.Grid(),out.Grid());
|
|
out.Checkerboard() = in.Checkerboard();
|
|
CoarseVector tin=in;
|
|
|
|
texch-=usecond();
|
|
CoarseVector pin = Cell.ExchangePeriodic(tin);
|
|
texch+=usecond();
|
|
|
|
CoarseVector pout(pin.Grid());
|
|
|
|
int npoint = geom.npoint;
|
|
typedef LatticeView<Cobj> Aview;
|
|
typedef LatticeView<Cvec> Vview;
|
|
|
|
const int Nsimd = CComplex::Nsimd();
|
|
|
|
int64_t osites=pin.Grid()->oSites();
|
|
|
|
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
|
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
|
|
+ 2.0*osites*sizeof(siteVector)*npoint;
|
|
|
|
{
|
|
tviews-=usecond();
|
|
autoView( in_v , pin, AcceleratorRead);
|
|
autoView( out_v , pout, AcceleratorWriteDiscard);
|
|
autoView( Stencil_v , Stencil, AcceleratorRead);
|
|
tviews+=usecond();
|
|
|
|
// Static and prereserve to keep UVM region live and not resized across multiple calls
|
|
ttemps-=usecond();
|
|
MultTemporaries.resize(npoint,pin.Grid());
|
|
ttemps+=usecond();
|
|
std::vector<Aview> AcceleratorViewContainer_h;
|
|
std::vector<Vview> AcceleratorVecViewContainer_h;
|
|
|
|
tviews-=usecond();
|
|
for(int p=0;p<npoint;p++) {
|
|
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
|
|
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
|
|
}
|
|
tviews+=usecond();
|
|
|
|
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
|
|
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
|
|
|
|
auto Aview_p = &AcceleratorViewContainer[0];
|
|
auto Vview_p = &AcceleratorVecViewContainer[0];
|
|
tcopy-=usecond();
|
|
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
|
|
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
|
|
tcopy+=usecond();
|
|
|
|
tmult-=usecond();
|
|
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
|
|
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
|
int32_t ss = spb/(nbasis*npoint);
|
|
int32_t bp = spb%(nbasis*npoint);
|
|
int32_t point= bp/nbasis;
|
|
int32_t b = bp%nbasis;
|
|
auto SE = Stencil_v.GetEntry(point,ss);
|
|
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
|
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
|
|
for(int bb=1;bb<nbasis;bb++) {
|
|
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
|
|
}
|
|
coalescedWrite(Vview_p[point][ss](b),res);
|
|
});
|
|
tmult2-=usecond();
|
|
accelerator_for(sb, osites*nbasis, Nsimd, {
|
|
int ss = sb/nbasis;
|
|
int b = sb%nbasis;
|
|
auto res = coalescedRead(Vview_p[0][ss](b));
|
|
for(int point=1;point<npoint;point++){
|
|
res = res + coalescedRead(Vview_p[point][ss](b));
|
|
}
|
|
coalescedWrite(out_v[ss](b),res);
|
|
});
|
|
tmult2+=usecond();
|
|
tmult+=usecond();
|
|
for(int p=0;p<npoint;p++) {
|
|
AcceleratorViewContainer_h[p].ViewClose();
|
|
AcceleratorVecViewContainer_h[p].ViewClose();
|
|
}
|
|
}
|
|
|
|
text-=usecond();
|
|
out = Cell.Extract(pout);
|
|
text+=usecond();
|
|
ttot+=usecond();
|
|
|
|
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
|
// std::cout << GridLogPerformance<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
|
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
|
|
|
};
|
|
|
|
void PopulateAdag(void)
|
|
{
|
|
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
|
Coordinate bcoor;
|
|
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
|
|
|
for(int p=0;p<geom.npoint;p++){
|
|
Coordinate scoor = bcoor;
|
|
for(int mu=0;mu<bcoor.size();mu++){
|
|
int L = CoarseGrid()->GlobalDimensions()[mu];
|
|
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
|
}
|
|
// Flip to poke/peekLocalSite and not too bad
|
|
auto link = peekSite(_A[p],scoor);
|
|
int pp = geom.Reverse(p);
|
|
pokeSite(adj(link),_Adag[pp],bcoor);
|
|
}
|
|
}
|
|
}
|
|
/////////////////////////////////////////////////////////////
|
|
//
|
|
// A) Only reduced flops option is to use a padded cell of depth 4
|
|
// and apply MpcDagMpc in the padded cell.
|
|
//
|
|
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
|
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
|
// Cost is 81x more, same as stencil size.
|
|
//
|
|
// But: can eliminate comms and do as local dirichlet.
|
|
//
|
|
// Local exchange gauge field once.
|
|
// Apply to all vectors, local only computation.
|
|
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
|
//
|
|
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
|
// pad by 2, apply Doe
|
|
// pad by 3, apply Deo
|
|
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
|
//
|
|
// => almost factor of 10 in setup cost, excluding data rearrangement
|
|
//
|
|
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
|
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////
|
|
// BFM HDCG style approach: Solve a system of equations to get Aij
|
|
//////////////////////////////////////////////////////////
|
|
/*
|
|
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
|
*
|
|
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
|
* = \sum_ball e^{iqk.delta} A_ji
|
|
*
|
|
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
|
*
|
|
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
*/
|
|
#if 0
|
|
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
|
{
|
|
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
|
GridBase *grid = FineGrid();
|
|
|
|
RealD tproj=0.0;
|
|
RealD teigen=0.0;
|
|
RealD tmat=0.0;
|
|
RealD tphase=0.0;
|
|
RealD tinv=0.0;
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Orthogonalise the subblocks over the basis
|
|
/////////////////////////////////////////////////////////////
|
|
CoarseScalar InnerProd(CoarseGrid());
|
|
blockOrthogonalise(InnerProd,Subspace.subspace);
|
|
|
|
const int npoint = geom.npoint;
|
|
|
|
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
|
int Nd = CoarseGrid()->Nd();
|
|
|
|
/*
|
|
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
* Matrix index i is mapped to this shift via
|
|
* geom.shifts[i]
|
|
*
|
|
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
* = M_{kl} A_ji^{b.b+l}
|
|
*
|
|
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
*
|
|
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
*
|
|
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
*/
|
|
teigen-=usecond();
|
|
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
ComplexD ci(0.0,1.0);
|
|
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
|
|
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
ComplexD phase(0.0,0.0);
|
|
for(int mu=0;mu<Nd;mu++){
|
|
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
|
}
|
|
phase=exp(phase*ci);
|
|
Mkl(k,l) = phase;
|
|
}
|
|
}
|
|
invMkl = Mkl.inverse();
|
|
teigen+=usecond();
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
// Now compute the matrix elements of linop between the orthonormal
|
|
// set of vectors.
|
|
///////////////////////////////////////////////////////////////////////
|
|
FineField phaV(grid); // Phased block basis vector
|
|
FineField MphaV(grid);// Matrix applied
|
|
CoarseVector coarseInner(CoarseGrid());
|
|
|
|
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
|
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
|
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
/////////////////////////////////////////////////////
|
|
// Stick a phase on every block
|
|
/////////////////////////////////////////////////////
|
|
tphase-=usecond();
|
|
CoarseComplexField coor(CoarseGrid());
|
|
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
|
for(int mu=0;mu<Nd;mu++){
|
|
LatticeCoordinate(coor,mu);
|
|
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
|
}
|
|
pha =exp(pha*ci);
|
|
phaV=Zero();
|
|
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
|
tphase+=usecond();
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// Multiple phased subspace vector by matrix and project to subspace
|
|
// Remove local bulk phase to leave relative phases
|
|
/////////////////////////////////////////////////////////////////////
|
|
tmat-=usecond();
|
|
linop.Op(phaV,MphaV);
|
|
tmat+=usecond();
|
|
|
|
tproj-=usecond();
|
|
blockProject(coarseInner,MphaV,Subspace.subspace);
|
|
coarseInner = conjugate(pha) * coarseInner;
|
|
|
|
ComputeProj[p] = coarseInner;
|
|
tproj+=usecond();
|
|
|
|
}
|
|
|
|
tinv-=usecond();
|
|
for(int k=0;k<npoint;k++){
|
|
FT[k] = Zero();
|
|
for(int l=0;l<npoint;l++){
|
|
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
|
}
|
|
|
|
int osites=CoarseGrid()->oSites();
|
|
autoView( A_v , _A[k], AcceleratorWrite);
|
|
autoView( FT_v , FT[k], AcceleratorRead);
|
|
accelerator_for(sss, osites, 1, {
|
|
for(int j=0;j<nbasis;j++){
|
|
A_v[sss](i,j) = FT_v[sss](j);
|
|
}
|
|
});
|
|
}
|
|
tinv+=usecond();
|
|
}
|
|
|
|
// Only needed if nonhermitian
|
|
if ( ! hermitian ) {
|
|
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
// PopulateAdag();
|
|
}
|
|
|
|
// Need to write something to populate Adag from A
|
|
ExchangeCoarseLinks();
|
|
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
|
}
|
|
#else
|
|
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
|
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
|
{
|
|
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
|
GridBase *grid = FineGrid();
|
|
|
|
RealD tproj=0.0;
|
|
RealD teigen=0.0;
|
|
RealD tmat=0.0;
|
|
RealD tphase=0.0;
|
|
RealD tphaseBZ=0.0;
|
|
RealD tinv=0.0;
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Orthogonalise the subblocks over the basis
|
|
/////////////////////////////////////////////////////////////
|
|
CoarseScalar InnerProd(CoarseGrid());
|
|
blockOrthogonalise(InnerProd,Subspace.subspace);
|
|
|
|
// for(int s=0;s<Subspace.subspace.size();s++){
|
|
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
|
|
// }
|
|
const int npoint = geom.npoint;
|
|
|
|
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
|
int Nd = CoarseGrid()->Nd();
|
|
|
|
/*
|
|
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
|
* Matrix index i is mapped to this shift via
|
|
* geom.shifts[i]
|
|
*
|
|
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
|
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
|
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
|
* = M_{kl} A_ji^{b.b+l}
|
|
*
|
|
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
|
*
|
|
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
|
*
|
|
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
|
*/
|
|
teigen-=usecond();
|
|
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
|
ComplexD ci(0.0,1.0);
|
|
for(int k=0;k<npoint;k++){ // Loop over momenta
|
|
|
|
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
|
ComplexD phase(0.0,0.0);
|
|
for(int mu=0;mu<Nd;mu++){
|
|
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
|
}
|
|
phase=exp(phase*ci);
|
|
Mkl(k,l) = phase;
|
|
}
|
|
}
|
|
invMkl = Mkl.inverse();
|
|
teigen+=usecond();
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
// Now compute the matrix elements of linop between the orthonormal
|
|
// set of vectors.
|
|
///////////////////////////////////////////////////////////////////////
|
|
FineField phaV(grid); // Phased block basis vector
|
|
FineField MphaV(grid);// Matrix applied
|
|
std::vector<FineComplexField> phaF(npoint,grid);
|
|
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
|
|
|
|
CoarseVector coarseInner(CoarseGrid());
|
|
|
|
typedef typename CComplex::scalar_type SComplex;
|
|
FineComplexField one(grid); one=SComplex(1.0);
|
|
FineComplexField zz(grid); zz = Zero();
|
|
tphase=-usecond();
|
|
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
/////////////////////////////////////////////////////
|
|
// Stick a phase on every block
|
|
/////////////////////////////////////////////////////
|
|
CoarseComplexField coor(CoarseGrid());
|
|
pha[p]=Zero();
|
|
for(int mu=0;mu<Nd;mu++){
|
|
LatticeCoordinate(coor,mu);
|
|
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
|
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
|
|
}
|
|
pha[p] =exp(pha[p]*ci);
|
|
|
|
blockZAXPY(phaF[p],pha[p],one,zz);
|
|
|
|
}
|
|
tphase+=usecond();
|
|
|
|
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
|
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
|
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
|
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
|
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
|
tphaseBZ-=usecond();
|
|
phaV = phaF[p]*Subspace.subspace[i];
|
|
tphaseBZ+=usecond();
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// Multiple phased subspace vector by matrix and project to subspace
|
|
// Remove local bulk phase to leave relative phases
|
|
/////////////////////////////////////////////////////////////////////
|
|
tmat-=usecond();
|
|
linop.Op(phaV,MphaV);
|
|
tmat+=usecond();
|
|
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
|
|
|
tproj-=usecond();
|
|
blockProject(coarseInner,MphaV,Subspace.subspace);
|
|
coarseInner = conjugate(pha[p]) * coarseInner;
|
|
|
|
ComputeProj[p] = coarseInner;
|
|
tproj+=usecond();
|
|
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
|
|
|
|
}
|
|
|
|
tinv-=usecond();
|
|
for(int k=0;k<npoint;k++){
|
|
FT[k] = Zero();
|
|
for(int l=0;l<npoint;l++){
|
|
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
|
}
|
|
|
|
int osites=CoarseGrid()->oSites();
|
|
autoView( A_v , _A[k], AcceleratorWrite);
|
|
autoView( FT_v , FT[k], AcceleratorRead);
|
|
accelerator_for(sss, osites, 1, {
|
|
for(int j=0;j<nbasis;j++){
|
|
A_v[sss](i,j) = FT_v[sss](j);
|
|
}
|
|
});
|
|
}
|
|
tinv+=usecond();
|
|
}
|
|
|
|
// Only needed if nonhermitian
|
|
if ( ! hermitian ) {
|
|
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
|
// PopulateAdag();
|
|
}
|
|
|
|
for(int p=0;p<geom.npoint;p++){
|
|
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
|
|
}
|
|
|
|
// Need to write something to populate Adag from A
|
|
ExchangeCoarseLinks();
|
|
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
|
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
|
}
|
|
#endif
|
|
void ExchangeCoarseLinks(void){
|
|
for(int p=0;p<geom.npoint;p++){
|
|
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
|
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
|
}
|
|
}
|
|
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
|
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
|
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
|
};
|
|
|
|
|
|
|
|
NAMESPACE_END(Grid);
|