1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-12 07:00:45 +01:00
Grid/Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Peter Boyle aefd255a3c Verbose
2024-04-30 05:20:41 -04:00

730 lines
26 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef typename CComplex::scalar_object SComplex;
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef iVector<SComplex,nbasis > calcVector;
typedef iMatrix<SComplex,nbasis > calcMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
GridCartesian * _CoarseGridMulti;
NonLocalStencilGeometry geom;
NonLocalStencilGeometry geom_srhs;
PaddedCell Cell;
GeneralLocalStencil Stencil;
deviceVector<calcVector> BLAS_B;
deviceVector<calcVector> BLAS_C;
std::vector<deviceVector<calcMatrix> > BLAS_A;
std::vector<deviceVector<ComplexD *> > BLAS_AP;
std::vector<deviceVector<ComplexD *> > BLAS_BP;
deviceVector<ComplexD *> BLAS_CP;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
// Can be used to do I/O on the operator matrices externally
void SetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
GridtoBLAS(A[p],BLAS_A[p]);
}
void GetMatrix (int p,CoarseMatrix & A)
{
assert(A.size()==geom_srhs.npoint);
BLAStoGrid(A[p],BLAS_A[p]);
}
void CopyMatrix (GeneralCoarseOp &_Op)
{
for(int p=0;p<geom.npoint;p++){
auto Aup = _Op.Cell.Extract(_Op._A[p]);
//Unpadded
GridtoBLAS(Aup,BLAS_A[p]);
}
}
/*
void CheckMatrix (GeneralCoarseOp &_Op)
{
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
for(int p=0;p<geom.npoint;p++){
//Unpadded
auto Aup = _Op.Cell.Extract(_Op._A[p]);
auto Ack = Aup;
BLAStoGrid(Ack,BLAS_A[p]);
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
}
std::cout <<"************* "<<std::endl;
}
*/
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
_CoarseGridMulti(CoarseGridMulti),
geom_srhs(_geom),
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
Cell(geom.Depth(),_CoarseGridMulti),
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
{
int32_t padded_sites = Cell.grids.back()->lSites();
int32_t unpadded_sites = CoarseGridMulti->lSites();
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
int32_t orhs = nrhs/CComplex::Nsimd();
padded_sites = padded_sites/nrhs;
unpadded_sites = unpadded_sites/nrhs;
/////////////////////////////////////////////////
// Device data vector storage
/////////////////////////////////////////////////
BLAS_A.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
}
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
BLAS_AP.resize(geom.npoint);
BLAS_BP.resize(geom.npoint);
for(int p=0;p<geom.npoint;p++){
BLAS_AP[p].resize(unpadded_sites);
BLAS_BP[p].resize(unpadded_sites);
}
BLAS_CP.resize(unpadded_sites);
/////////////////////////////////////////////////
// Pointers to data
/////////////////////////////////////////////////
// Site identity mapping for A
for(int p=0;p<geom.npoint;p++){
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
acceleratorPut(BLAS_AP[p][ss],ptr);
}
}
// Site identity mapping for C
for(int ss=0;ss<unpadded_sites;ss++){
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
acceleratorPut(BLAS_CP[ss],ptr);
}
// Neighbour table is more complicated
int32_t j=0; // Interior point counter (unpadded)
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
int ghost_zone=0;
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
}
}
if( ghost_zone==0) {
for(int32_t point = 0 ; point < geom.npoint; point++){
int i=s*orhs*geom.npoint+point;
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
assert(nbr<BLAS_B.size());
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
}
j++;
}
}
assert(j==unpadded_sites);
}
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Fg = from.Grid();
assert(!Fg->_isCheckerBoarded);
int nd = Fg->_ndimension;
to.resize(Fg->lSites());
Coordinate LocalLatt = Fg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate f_ostride = Fg->_ostride;
Coordinate f_istride = Fg->_istride;
Coordinate f_rdimensions = Fg->_rdimensions;
autoView(from_v,from,AcceleratorRead);
auto to_v = &to[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate from_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
from_coor[i] = base[i];
}
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
const vector_type* from = (const vector_type *)&from_v[from_oidx];
scalar_type* to = (scalar_type *)&to_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp = getlane(from[w], from_lane);
to[w] = stmp;
}
});
}
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *Tg = grid.Grid();
assert(!Tg->_isCheckerBoarded);
int nd = Tg->_ndimension;
assert(in.size()==Tg->lSites());
Coordinate LocalLatt = Tg->LocalDimensions();
size_t nsite = 1;
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
////////////////////////////////////////////////////////////////////////////////////////////////
// do the index calc on the GPU
////////////////////////////////////////////////////////////////////////////////////////////////
Coordinate t_ostride = Tg->_ostride;
Coordinate t_istride = Tg->_istride;
Coordinate t_rdimensions = Tg->_rdimensions;
autoView(to_v,grid,AcceleratorWrite);
auto from_v = &in[0];
const int words=sizeof(vobj)/sizeof(vector_type);
accelerator_for(idx,nsite,1,{
Coordinate to_coor, base;
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
for(int i=0;i<nd;i++){
to_coor[i] = base[i];
}
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
vector_type* to = (vector_type *)&to_v[to_oidx];
scalar_type* from = (scalar_type *)&from_v[idx];
scalar_type stmp;
for(int w=0;w<words;w++){
stmp=from[w];
putlane(to[w], stmp, to_lane);
}
});
}
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace,
GridBase *CoarseGrid)
{
#if 0
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
// Could save on temporary storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
phaV = phaF[p]*Subspace.subspace[i];
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
linop.Op(phaV,MphaV);
// Fixme, could use batched block projector here
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
}
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
for(int k=0;k<npoint;k++){
FT = Zero();
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
/*
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
Takes 600s to compute matrix elements, DOMINATED by the block project.
Easy to speed up with the batched block project.
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
// Block project below taks to 240s
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
*/
#else
RealD tproj=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
GridBase *grid = Subspace.FineGrid;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid);
blockOrthogonalise(InnerProd,Subspace.subspace);
MultiRHSBlockProject<Lattice<Fobj> > Projector;
Projector.Allocate(nbasis,grid,CoarseGrid);
Projector.ImportBasis(Subspace.subspace);
const int npoint = geom_srhs.npoint;
Coordinate clatt = CoarseGrid->GlobalDimensions();
int Nd = CoarseGrid->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
CoarseVector coarseInner(CoarseGrid);
tphase=-usecond();
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid);
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
// Could save on temporary storage here
std::vector<CoarseMatrix> _A;
_A.resize(geom_srhs.npoint,CoarseGrid);
// Count use small chunks than npoint == 81 and save memory
int batch = 9;
std::vector<FineField> _MphaV(batch,grid);
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
CoarseVector FT(CoarseGrid);
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
// Fixme : do this in batches
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
for(int b=0;b<MIN(batch,npoint-p);b++){
tphaseBZ-=usecond();
phaV = phaF[p+b]*Subspace.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
// Memory footprint was an issue
tmat-=usecond();
linop.Op(phaV,MphaV);
_MphaV[b] = MphaV;
tmat+=usecond();
}
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
tproj-=usecond();
Projector.blockProject(_MphaV,TmpProj);
tproj+=usecond();
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
for(int b=0;b<MIN(batch,npoint-p);b++){
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
}
}
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT = Zero();
// 81 kernel calls as many ComputeProj vectors
// Could fuse with a vector of views, but ugly
// Could unroll the expression and run fewer kernels -- much more attractive
// Could also do non blocking.
#if 0
for(int l=0;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
#else
const int radix = 9;
int ll;
for(ll=0;ll+radix-1<npoint;ll+=radix){
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
FT = FT
+ invMkl(ll+0,k)*ComputeProj[ll+0]
+ invMkl(ll+1,k)*ComputeProj[ll+1]
+ invMkl(ll+2,k)*ComputeProj[ll+2]
+ invMkl(ll+3,k)*ComputeProj[ll+3]
+ invMkl(ll+4,k)*ComputeProj[ll+4]
+ invMkl(ll+5,k)*ComputeProj[ll+5]
+ invMkl(ll+6,k)*ComputeProj[ll+6]
+ invMkl(ll+7,k)*ComputeProj[ll+7]
+ invMkl(ll+8,k)*ComputeProj[ll+8];
}
for(int l=ll;l<npoint;l++){
FT= FT+ invMkl(l,k)*ComputeProj[l];
}
#endif
// 1 kernel call -- must be cheaper
int osites=CoarseGrid->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT, AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
// if ( ! hermitian ) {
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
// PopulateAdag();
// }
// Need to write something to populate Adag from A
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
for(int p=0;p<geom_srhs.npoint;p++){
GridtoBLAS(_A[p],BLAS_A[p]);
}
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
#endif
}
void Mdag(const CoarseVector &in, CoarseVector &out)
{
this->M(in,out);
}
void M (const CoarseVector &in, CoarseVector &out)
{
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
RealD t_tot;
RealD t_exch;
RealD t_GtoB;
RealD t_BtoG;
RealD t_mult;
t_tot=-usecond();
CoarseVector tin=in;
t_exch=-usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
t_exch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef calcMatrix* Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
assert(nrhs>=1);
RealD flops,bytes;
int64_t osites=in.Grid()->oSites(); // unpadded
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
+ 2.0*osites*sizeof(siteVector)*npoint;
t_GtoB=-usecond();
GridtoBLAS(pin,BLAS_B);
t_GtoB+=usecond();
GridBLAS BLAS;
t_mult=-usecond();
for(int p=0;p<geom.npoint;p++){
RealD c = 1.0;
if (p==0) c = 0.0;
ComplexD beta(c);
BLAS.gemmBatched(nbasis,nrhs,nbasis,
ComplexD(1.0),
BLAS_AP[p],
BLAS_BP[p],
ComplexD(c),
BLAS_CP);
}
BLAS.synchronise();
t_mult+=usecond();
t_BtoG=-usecond();
BLAStoGrid(out,BLAS_C);
t_BtoG+=usecond();
t_tot+=usecond();
/*
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
*/
// std::cout << GridLogMessage<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);