mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
540 lines
16 KiB
C++
540 lines
16 KiB
C++
/*
|
|
* Warning: This code illustrative only: not well tested, and not meant for production use
|
|
* without regression / tests being applied
|
|
*/
|
|
|
|
#include <Grid/Grid.h>
|
|
|
|
using namespace std;
|
|
using namespace Grid;
|
|
typedef SpinColourMatrix Propagator;
|
|
typedef SpinColourVector Fermion;
|
|
typedef PeriodicGimplR GimplR;
|
|
|
|
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
|
|
{
|
|
public:
|
|
INHERIT_GIMPL_TYPES(Gimpl);
|
|
|
|
GridBase *grid;
|
|
GaugeField U;
|
|
|
|
CovariantLaplacianCshift(GaugeField &_U) :
|
|
grid(_U.Grid()),
|
|
U(_U) { };
|
|
|
|
virtual GridBase *Grid(void) { return grid; };
|
|
|
|
virtual void M (const Field &in, Field &out)
|
|
{
|
|
out=Zero();
|
|
for(int mu=0;mu<Nd-1;mu++) {
|
|
GaugeLinkField Umu = PeekIndex<LorentzIndex>(U, mu); // NB: Inefficent
|
|
out = out - Gimpl::CovShiftForward(Umu,mu,in);
|
|
out = out - Gimpl::CovShiftBackward(Umu,mu,in);
|
|
out = out + 2.0*in;
|
|
}
|
|
};
|
|
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
|
|
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
|
|
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
|
|
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
|
|
};
|
|
|
|
void MakePhase(Coordinate mom,LatticeComplex &phase)
|
|
{
|
|
GridBase *grid = phase.Grid();
|
|
auto latt_size = grid->GlobalDimensions();
|
|
ComplexD ci(0.0,1.0);
|
|
phase=Zero();
|
|
|
|
LatticeComplex coor(phase.Grid());
|
|
for(int mu=0;mu<Nd;mu++){
|
|
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
|
LatticeCoordinate(coor,mu);
|
|
phase = phase + (TwoPiL * mom[mu]) * coor;
|
|
}
|
|
phase = exp(phase*ci);
|
|
}
|
|
void LinkSmear(int nstep, RealD rho,LatticeGaugeField &Uin,LatticeGaugeField &Usmr)
|
|
{
|
|
Smear_Stout<GimplR> Stout(rho);
|
|
LatticeGaugeField Utmp(Uin.Grid());
|
|
Utmp = Uin;
|
|
for(int i=0;i<nstep;i++){
|
|
Stout.smear(Usmr,Utmp);
|
|
Utmp = Usmr;
|
|
}
|
|
}
|
|
void PointSource(Coordinate &coor,LatticePropagator &source)
|
|
{
|
|
// Coordinate coor({0,0,0,0});
|
|
source=Zero();
|
|
SpinColourMatrix kronecker; kronecker=1.0;
|
|
pokeSite(kronecker,source,coor);
|
|
}
|
|
void GFWallSource(int tslice,LatticePropagator &source)
|
|
{
|
|
GridBase *grid = source.Grid();
|
|
LatticeComplex one(grid); one = ComplexD(1.0,0.0);
|
|
LatticeComplex zz(grid); zz=Zero();
|
|
LatticeInteger t(grid);
|
|
LatticeCoordinate(t,Tdir);
|
|
one = where(t==Integer(tslice), one, zz);
|
|
source = 1.0;
|
|
source = source * one;
|
|
}
|
|
|
|
void Z2WallSource(GridParallelRNG &RNG,int tslice,LatticePropagator &source)
|
|
{
|
|
GridBase *grid = source.Grid();
|
|
LatticeComplex noise(grid);
|
|
LatticeComplex zz(grid); zz=Zero();
|
|
LatticeInteger t(grid);
|
|
|
|
RealD nrm=1.0/sqrt(2);
|
|
bernoulli(RNG, noise); // 0,1 50:50
|
|
|
|
noise = (2.*noise - Complex(1,1))*nrm;
|
|
|
|
LatticeCoordinate(t,Tdir);
|
|
noise = where(t==Integer(tslice), noise, zz);
|
|
|
|
source = 1.0;
|
|
source = source*noise;
|
|
std::cout << " Z2 wall " << norm2(source) << std::endl;
|
|
}
|
|
void GaugeFix(LatticeGaugeField &U,LatticeGaugeField &Ufix)
|
|
{
|
|
Real alpha=0.05;
|
|
|
|
Real plaq=WilsonLoops<GimplR>::avgPlaquette(U);
|
|
|
|
std::cout << " Initial plaquette "<<plaq << std::endl;
|
|
|
|
LatticeColourMatrix xform(U.Grid());
|
|
Ufix = U;
|
|
int orthog=Nd-1;
|
|
FourierAcceleratedGaugeFixer<GimplR>::SteepestDescentGaugeFix(Ufix,xform,alpha,100000,1.0e-14, 1.0e-14,true,orthog);
|
|
|
|
plaq=WilsonLoops<GimplR>::avgPlaquette(Ufix);
|
|
|
|
std::cout << " Final plaquette "<<plaq << std::endl;
|
|
}
|
|
template<class Field>
|
|
void GaussianSmear(LatticeGaugeField &U,Field &unsmeared,Field &smeared)
|
|
{
|
|
typedef CovariantLaplacianCshift <GimplR,Field> Laplacian_t;
|
|
Laplacian_t Laplacian(U);
|
|
|
|
Integer Iterations = 40;
|
|
Real width = 2.0;
|
|
Real coeff = (width*width) / Real(4*Iterations);
|
|
|
|
Field tmp(U.Grid());
|
|
smeared=unsmeared;
|
|
// chi = (1-p^2/2N)^N kronecker
|
|
for(int n = 0; n < Iterations; ++n) {
|
|
Laplacian.M(smeared,tmp);
|
|
smeared = smeared - coeff*tmp;
|
|
std::cout << " smear iter " << n<<" " <<norm2(smeared)<<std::endl;
|
|
}
|
|
}
|
|
void GaussianSource(Coordinate &site,LatticeGaugeField &U,LatticePropagator &source)
|
|
{
|
|
LatticePropagator tmp(source.Grid());
|
|
PointSource(site,source);
|
|
std::cout << " GaussianSource Kronecker "<< norm2(source)<<std::endl;
|
|
tmp = source;
|
|
GaussianSmear(U,tmp,source);
|
|
std::cout << " GaussianSource Smeared "<< norm2(source)<<std::endl;
|
|
}
|
|
void GaussianWallSource(GridParallelRNG &RNG,int tslice,LatticeGaugeField &U,LatticePropagator &source)
|
|
{
|
|
Z2WallSource(RNG,tslice,source);
|
|
auto tmp = source;
|
|
GaussianSmear(U,tmp,source);
|
|
}
|
|
void SequentialSource(int tslice,Coordinate &mom,LatticePropagator &spectator,LatticePropagator &source)
|
|
{
|
|
assert(mom.size()==Nd);
|
|
assert(mom[Tdir] == 0);
|
|
|
|
GridBase * grid = spectator.Grid();
|
|
|
|
LatticeInteger ts(grid);
|
|
LatticeCoordinate(ts,Tdir);
|
|
source = Zero();
|
|
source = where(ts==Integer(tslice),spectator,source); // Stick in a slice of the spectator, zero everywhere else
|
|
|
|
LatticeComplex phase(grid);
|
|
MakePhase(mom,phase);
|
|
|
|
source = source *phase;
|
|
}
|
|
template<class Action>
|
|
void Solve(Action &D,LatticePropagator &source,LatticePropagator &propagator)
|
|
{
|
|
GridBase *UGrid = D.GaugeGrid();
|
|
GridBase *FGrid = D.FermionGrid();
|
|
|
|
LatticeFermion src4 (UGrid);
|
|
LatticeFermion src5 (FGrid);
|
|
LatticeFermion result5(FGrid);
|
|
LatticeFermion result4(UGrid);
|
|
|
|
ConjugateGradient<LatticeFermion> CG(1.0e-12,100000);
|
|
SchurRedBlackDiagTwoSolve<LatticeFermion> schur(CG);
|
|
ZeroGuesser<LatticeFermion> ZG; // Could be a DeflatedGuesser if have eigenvectors
|
|
for(int s=0;s<Nd;s++){
|
|
for(int c=0;c<Nc;c++){
|
|
PropToFerm<Action>(src4,source,s,c);
|
|
|
|
D.ImportPhysicalFermionSource(src4,src5);
|
|
|
|
result5=Zero();
|
|
schur(D,src5,result5,ZG);
|
|
std::cout<<GridLogMessage
|
|
<<"spin "<<s<<" color "<<c
|
|
<<" norm2(src5d) " <<norm2(src5)
|
|
<<" norm2(result5d) "<<norm2(result5)<<std::endl;
|
|
|
|
D.ExportPhysicalFermionSolution(result5,result4);
|
|
|
|
FermToProp<Action>(propagator,result4,s,c);
|
|
}
|
|
}
|
|
}
|
|
|
|
class MesonFile: Serializable {
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFile, std::vector<std::vector<Complex> >, data);
|
|
};
|
|
|
|
void MesonTrace(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
|
|
{
|
|
const int nchannel=4;
|
|
Gamma::Algebra Gammas[nchannel][2] = {
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::Gamma5},
|
|
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::GammaTGamma5},
|
|
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::Gamma5},
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaTGamma5}
|
|
};
|
|
|
|
Gamma G5(Gamma::Algebra::Gamma5);
|
|
|
|
LatticeComplex meson_CF(q1.Grid());
|
|
MesonFile MF;
|
|
|
|
for(int ch=0;ch<nchannel;ch++){
|
|
|
|
Gamma Gsrc(Gammas[ch][0]);
|
|
Gamma Gsnk(Gammas[ch][1]);
|
|
|
|
meson_CF = trace(G5*adj(q1)*G5*Gsnk*q2*adj(Gsrc));
|
|
|
|
std::vector<TComplex> meson_T;
|
|
sliceSum(meson_CF,meson_T, Tdir);
|
|
|
|
int nt=meson_T.size();
|
|
|
|
std::vector<Complex> corr(nt);
|
|
for(int t=0;t<nt;t++){
|
|
corr[t] = TensorRemove(meson_T[t]); // Yes this is ugly, not figured a work around
|
|
std::cout << " channel "<<ch<<" t "<<t<<" " <<corr[t]<<std::endl;
|
|
}
|
|
MF.data.push_back(corr);
|
|
}
|
|
|
|
{
|
|
XmlWriter WR(file);
|
|
write(WR,"MesonFile",MF);
|
|
}
|
|
}
|
|
|
|
void Meson3pt(std::string file,LatticePropagator &q1,LatticePropagator &q2,LatticeComplex &phase)
|
|
{
|
|
const int nchannel=4;
|
|
Gamma::Algebra Gammas[nchannel][2] = {
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaX},
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaY},
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaZ},
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaT}
|
|
};
|
|
|
|
Gamma G5(Gamma::Algebra::Gamma5);
|
|
|
|
LatticeComplex meson_CF(q1.Grid());
|
|
MesonFile MF;
|
|
|
|
for(int ch=0;ch<nchannel;ch++){
|
|
|
|
Gamma Gsrc(Gammas[ch][0]);
|
|
Gamma Gsnk(Gammas[ch][1]);
|
|
|
|
meson_CF = trace(G5*adj(q1)*G5*Gsnk*q2*adj(Gsrc));
|
|
|
|
std::vector<TComplex> meson_T;
|
|
sliceSum(meson_CF,meson_T, Tdir);
|
|
|
|
int nt=meson_T.size();
|
|
|
|
std::vector<Complex> corr(nt);
|
|
for(int t=0;t<nt;t++){
|
|
corr[t] = TensorRemove(meson_T[t]); // Yes this is ugly, not figured a work around
|
|
std::cout << " channel "<<ch<<" t "<<t<<" " <<corr[t]<<std::endl;
|
|
}
|
|
MF.data.push_back(corr);
|
|
}
|
|
|
|
{
|
|
XmlWriter WR(file);
|
|
write(WR,"MesonFile",MF);
|
|
}
|
|
}
|
|
|
|
|
|
void WallSinkMesonTrace(std::string file,std::vector<Propagator> &q1,std::vector<Propagator> &q2)
|
|
{
|
|
const int nchannel=4;
|
|
Gamma::Algebra Gammas[nchannel][2] = {
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::Gamma5},
|
|
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::GammaTGamma5},
|
|
{Gamma::Algebra::GammaTGamma5,Gamma::Algebra::Gamma5},
|
|
{Gamma::Algebra::Gamma5 ,Gamma::Algebra::GammaTGamma5}
|
|
};
|
|
|
|
Gamma G5(Gamma::Algebra::Gamma5);
|
|
int nt=q1.size();
|
|
std::vector<Complex> meson_CF(nt);
|
|
MesonFile MF;
|
|
|
|
for(int ch=0;ch<nchannel;ch++){
|
|
|
|
Gamma Gsrc(Gammas[ch][0]);
|
|
Gamma Gsnk(Gammas[ch][1]);
|
|
|
|
std::vector<Complex> corr(nt);
|
|
for(int t=0;t<nt;t++){
|
|
meson_CF[t] = trace(G5*adj(q1[t])*G5*Gsnk*q2[t]*adj(Gsrc));
|
|
corr[t] = TensorRemove(meson_CF[t]); // Yes this is ugly, not figured a work around
|
|
std::cout << " channel "<<ch<<" t "<<t<<" " <<corr[t]<<std::endl;
|
|
}
|
|
MF.data.push_back(corr);
|
|
}
|
|
|
|
{
|
|
XmlWriter WR(file);
|
|
write(WR,"MesonFile",MF);
|
|
}
|
|
}
|
|
int make_idx(int p, int m,int nmom)
|
|
{
|
|
if (m==0) return p;
|
|
assert(p==0);
|
|
return nmom + m - 1;
|
|
}
|
|
|
|
int main (int argc, char ** argv)
|
|
{
|
|
Grid_init(&argc,&argv);
|
|
|
|
// Double precision grids
|
|
auto latt = GridDefaultLatt();
|
|
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
|
|
GridDefaultSimd(Nd,vComplex::Nsimd()),
|
|
GridDefaultMpi());
|
|
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
|
|
|
|
|
LatticeGaugeField Umu(UGrid);
|
|
LatticeGaugeField Utmp(UGrid);
|
|
LatticeGaugeField Usmr(UGrid);
|
|
std::string config;
|
|
if( argc > 1 && argv[1][0] != '-' )
|
|
{
|
|
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
|
|
FieldMetaData header;
|
|
NerscIO::readConfiguration(Umu, header, argv[1]);
|
|
config=argv[1];
|
|
}
|
|
else
|
|
{
|
|
std::cout<<GridLogMessage <<"Using hot configuration"<<std::endl;
|
|
SU<Nc>::ColdConfiguration(Umu);
|
|
config="ColdConfig";
|
|
}
|
|
// GaugeFix(Umu,Utmp);
|
|
// Umu=Utmp;
|
|
|
|
int nsmr=3;
|
|
RealD rho=0.1;
|
|
LinkSmear(nsmr,rho,Umu,Usmr);
|
|
|
|
|
|
std::vector<int> smeared_link({ 0,0,1} );
|
|
std::vector<RealD> masses({ 0.004,0.02477,0.447} ); // u/d, s, c ??
|
|
std::vector<RealD> M5s ({ 1.8,1.8,1.0} );
|
|
std::vector<RealD> bs ({ 1.0,1.0,1.5} ); // DDM
|
|
std::vector<RealD> cs ({ 0.0,0.0,0.5} ); // DDM
|
|
std::vector<int> Ls_s ({ 16,16,12} );
|
|
std::vector<GridCartesian *> FGrids;
|
|
std::vector<GridRedBlackCartesian *> FrbGrids;
|
|
|
|
std::vector<Coordinate> momenta;
|
|
momenta.push_back(Coordinate({0,0,0,0}));
|
|
momenta.push_back(Coordinate({1,0,0,0}));
|
|
momenta.push_back(Coordinate({2,0,0,0}));
|
|
|
|
int nmass = masses.size();
|
|
int nmom = momenta.size();
|
|
|
|
std::vector<MobiusFermionD *> FermActs;
|
|
|
|
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
|
std::cout<<GridLogMessage <<"MobiusFermion action as Scaled Shamir kernel"<<std::endl;
|
|
std::cout<<GridLogMessage <<"======================"<<std::endl;
|
|
|
|
std::vector<Complex> boundary = {1,1,1,-1};
|
|
typedef MobiusFermionD FermionAction;
|
|
FermionAction::ImplParams Params(boundary);
|
|
|
|
for(int m=0;m<masses.size();m++) {
|
|
|
|
RealD mass = masses[m];
|
|
RealD M5 = M5s[m];
|
|
RealD b = bs[m];
|
|
RealD c = cs[m];
|
|
int Ls = Ls_s[m];
|
|
|
|
if ( smeared_link[m] ) Utmp = Usmr;
|
|
else Utmp = Umu;
|
|
|
|
FGrids.push_back(SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid));
|
|
FrbGrids.push_back(SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid));
|
|
|
|
FermActs.push_back(new MobiusFermionD(Utmp,*FGrids[m],*FrbGrids[m],*UGrid,*UrbGrid,mass,M5,b,c,Params));
|
|
}
|
|
|
|
LatticePropagator z2wall_source(UGrid);
|
|
LatticePropagator gfwall_source(UGrid);
|
|
LatticePropagator phased_prop(UGrid);
|
|
|
|
int tslice = 0;
|
|
int tseq=(tslice+16)%latt[Nd-1];
|
|
//////////////////////////////////////////////////////////////////////
|
|
// RNG seeded for Z2 wall
|
|
//////////////////////////////////////////////////////////////////////
|
|
// You can manage seeds however you like.
|
|
// Recommend SeedUniqueString.
|
|
//////////////////////////////////////////////////////////////////////
|
|
GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString("Study2-Source_Z2_p_0_0_0_t_0-880");
|
|
Z2WallSource (RNG4,tslice,z2wall_source);
|
|
GFWallSource (tslice,gfwall_source);
|
|
|
|
std::vector<LatticeComplex> phase(nmom,UGrid);
|
|
for(int m=0;m<nmom;m++){
|
|
MakePhase(momenta[m],phase[m]);
|
|
}
|
|
|
|
std::vector<LatticePropagator> Z2Props (nmom+nmass-1,UGrid);
|
|
std::vector<LatticePropagator> GFProps (nmom+nmass-1,UGrid);
|
|
for(int p=0;p<nmom;p++) {
|
|
int m=0;
|
|
int idx = make_idx(p,m,nmom);
|
|
phased_prop = z2wall_source * phase[p];
|
|
Solve(*FermActs[m],phased_prop ,Z2Props[idx]);
|
|
|
|
phased_prop = gfwall_source * phase[p];
|
|
Solve(*FermActs[m],phased_prop ,GFProps[idx]);
|
|
}
|
|
for(int m=1;m<nmass;m++) {
|
|
int p=0;
|
|
int idx = make_idx(p,m,nmom);
|
|
phased_prop = z2wall_source;
|
|
Solve(*FermActs[m],phased_prop ,Z2Props[idx]);
|
|
|
|
phased_prop = gfwall_source;
|
|
Solve(*FermActs[m],phased_prop ,GFProps[idx]);
|
|
}
|
|
|
|
std::vector<std::vector<Propagator> > wsnk_z2Props(nmom+nmass-1);
|
|
std::vector<std::vector<Propagator> > wsnk_gfProps(nmom+nmass-1);
|
|
|
|
// Non-zero kaon and point and D two point
|
|
// WW stick momentum on m1 (lighter)
|
|
// zero momentum on m2
|
|
for(int m1=0;m1<nmass;m1++) {
|
|
for(int m2=m1;m2<nmass;m2++) {
|
|
int pmax = (m1==0)? nmom:1;
|
|
for(int p=0;p<pmax;p++){
|
|
|
|
std::stringstream ssg,ssz;
|
|
std::stringstream wssg,wssz;
|
|
|
|
int idx1 = make_idx(p,m1,nmom);
|
|
int idx2 = make_idx(0,m2,nmom);
|
|
|
|
/// Point sinks
|
|
ssg<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_p_gf_meson.xml";
|
|
ssz<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_p_z2_meson.xml";
|
|
MesonTrace(ssz.str(),Z2Props[idx1],Z2Props[idx2],phase[p]); // Q1 is conjugated
|
|
MesonTrace(ssg.str(),GFProps[idx1],GFProps[idx2],phase[p]);
|
|
|
|
/// Wall sinks
|
|
wssg<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_w_gf_meson.xml";
|
|
wssz<<config<<"_p"<<p<< "_m" << m1 << "_m"<< m2 << "_w_z2_meson.xml";
|
|
|
|
phased_prop = GFProps[m2] * phase[p];
|
|
sliceSum(phased_prop,wsnk_gfProps[m1],Tdir);
|
|
sliceSum(GFProps[m1],wsnk_gfProps[m2],Tdir);
|
|
WallSinkMesonTrace(wssg.str(),wsnk_gfProps[m1],wsnk_gfProps[m2]);
|
|
|
|
phased_prop = Z2Props[m2] * phase[p];
|
|
sliceSum(phased_prop,wsnk_gfProps[m1],Tdir);
|
|
sliceSum(Z2Props[m1],wsnk_gfProps[m2],Tdir);
|
|
WallSinkMesonTrace(wssz.str(),wsnk_z2Props[m1],wsnk_z2Props[m2]);
|
|
}
|
|
}}
|
|
|
|
|
|
/////////////////////////////////////
|
|
// Sequential solves
|
|
/////////////////////////////////////
|
|
LatticePropagator seq_wsnk_z2src(UGrid);
|
|
LatticePropagator seq_wsnk_gfsrc(UGrid);
|
|
LatticePropagator seq_psnk_z2src(UGrid);
|
|
LatticePropagator seq_psnk_gfsrc(UGrid);
|
|
LatticePropagator source(UGrid);
|
|
for(int m=0;m<nmass-1;m++){
|
|
int spect_idx = make_idx(0,m,nmom);
|
|
int charm=nmass-1;
|
|
|
|
SequentialSource(tseq,momenta[0],GFProps[spect_idx],source);
|
|
Solve(*FermActs[charm],source,seq_psnk_gfsrc);
|
|
|
|
SequentialSource(tseq,momenta[0],Z2Props[spect_idx],source);
|
|
Solve(*FermActs[charm],source,seq_psnk_z2src);
|
|
|
|
// Todo need wall sequential solve
|
|
for(int p=0;p<nmom;p++){
|
|
int active_idx = make_idx(p,0,nmom);
|
|
std::stringstream seq_3pt_p_z2;
|
|
std::stringstream seq_3pt_p_gf;
|
|
std::stringstream seq_3pt_w_z2;
|
|
std::stringstream seq_3pt_w_gf;
|
|
seq_3pt_p_z2 <<config<<"_3pt_p"<<p<< "_m" << m << "_p_z2_meson.xml";
|
|
seq_3pt_p_gf <<config<<"_3pt_p"<<p<< "_m" << m << "_p_gf_meson.xml";
|
|
seq_3pt_w_z2 <<config<<"_3pt_p"<<p<< "_m" << m << "_w_z2_meson.xml";
|
|
seq_3pt_w_gf <<config<<"_3pt_p"<<p<< "_m" << m << "_w_gf_meson.xml";
|
|
Meson3pt(seq_3pt_p_gf.str(),GFProps[active_idx],seq_psnk_gfsrc,phase[p]);
|
|
Meson3pt(seq_3pt_p_z2.str(),Z2Props[active_idx],seq_psnk_z2src,phase[p]);
|
|
}
|
|
}
|
|
|
|
Grid_finalize();
|
|
}
|
|
|
|
|
|
|