1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/extras/Hadrons/Modules/MScalar/ScalarVP.cc

474 lines
16 KiB
C++

#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/*
* Scalar QED vacuum polarisation up to O(alpha)
*
*
* _______
* / \ ( adj(S(a\hat{nu}|x)) U_mu(x) S(0|x+a\hat{mu}) U_nu(0) )
* Diagram notation: U_nu * * U_mu = 2 Re( - )
* \_______/ ( adj(S(a\hat{nu}|x+a\hat{mu})) adj(U_mu(x)) S(0|x) U_nu(0) )
*
*
*
* _______
* / \
* free = 1 * * 1
* \_______/
*
*
*
* _______
* / \
* S = iA_nu * * iA_mu
* \_______/
*
*
* Delta_1
* ___*___
* / \
* X = 1 * * 1
* \___*___/
* Delta_1
*
* Delta_1 Delta_1
* ___*___ ___*___
* / \ / \
* 1 * * iA_mu + iA_nu * * 1
* \_______/ \_______/
* 4C = _______ _______
* / \ / \
* + 1 * * iA_mu + iA_nu * * 1
* \___*___/ \___*___/
* Delta_1 Delta_1
*
* Delta_1 Delta_1
* _*___*_ _______
* / \ / \
* 2E = 1 * * 1 + 1 * * 1
* \_______/ \_*___*_/
* Delta_1 Delta_1
*
* Delta_2
* ___*___ _______
* / \ / \
* 2T = 1 * * 1 + 1 * * 1
* \_______/ \___*___/
* Delta_2
*
*
* _______
* / \
* srcT = -A_nu^2/2 * * 1
* \_______/
*
*
*
* _______
* / \
* snkT = 1 * * -A_mu^2/2
* \_______/
*
* Full VP to O(alpha) = free + q^2*(S+X+4C+2E+2T+srcT+snkT)
*/
/******************************************************************************
* TScalarVP implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TScalarVP::TScalarVP(const std::string name)
: Module<ScalarVPPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TScalarVP::getInput(void)
{
propQName_ = par().scalarProp + "_Q";
propSunName_ = par().scalarProp + "_Sun";
propTadName_ = par().scalarProp + "_Tad";
std::vector<std::string> in = {par().emField, propQName_, propSunName_,
propTadName_};
return in;
}
std::vector<std::string> TScalarVP::getOutput(void)
{
std::vector<std::string> out;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
out.push_back(getName() + "_propQ_" + std::to_string(mu));
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
out.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
}
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TScalarVP::setup(void)
{
freeMomPropName_ = FREEMOMPROP(static_cast<TChargedProp *>(env().getModule(par().scalarProp))->par().mass);
GFSrcName_ = "_" + par().scalarProp + "_DinvSrc";
prop0Name_ = par().scalarProp + "_0";
phaseName_.clear();
muPropQName_.clear();
vpTensorName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
std::vector<std::string> vpTensorName_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
vpTensorName_mu.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
vpTensorName_.push_back(vpTensorName_mu);
}
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropQName_[mu]);
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
env().registerLattice<ScalarField>(vpTensorName_[mu][nu]);
}
}
}
// execution ///////////////////////////////////////////////////////////////////
void TScalarVP::execute(void)
{
// Get objects cached by ChargedProp module
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
Real q = static_cast<TChargedProp *>(env().getModule(par().scalarProp))->par().charge;
freeMomProp_ = env().getObject<ScalarField>(freeMomPropName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phase_.push_back(env().getObject<ScalarField>(phaseName_[mu]));
}
GFSrc_ = env().getObject<ScalarField>(GFSrcName_);
prop0_ = env().getObject<ScalarField>(prop0Name_);
// Propagator from unshifted source
ScalarField &propQ = *env().getObject<ScalarField>(propQName_);
ScalarField &propSun = *env().getObject<ScalarField>(propSunName_);
ScalarField &propTad = *env().getObject<ScalarField>(propTadName_);
// Propagators from shifted sources
LOG(Message) << "Computing O(q) charged scalar propagators..."
<< std::endl;
std::vector<ScalarField> muPropQ;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
muPropQ.push_back(*env().createLattice<ScalarField>(muPropQName_[mu]));
// -G*momD1*G*F*tau_mu*Src (momD1 = F*D1*Finv)
muPropQ[mu] = adj(*phase_[mu])*(*GFSrc_);
momD1(muPropQ[mu], fft);
muPropQ[mu] = -(*freeMomProp_)*muPropQ[mu];
fft.FFT_all_dim(muPropQ[mu], muPropQ[mu], FFT::backward);
}
// CONTRACTIONS
ScalarField prop1(env().getGrid()), prop2(env().getGrid());
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField Amu(env().getGrid()), U_snk(env().getGrid());
ScalarField tmp_vp1(env().getGrid()), tmp_vp2(env().getGrid());
TComplex Anu0, U_src;
std::vector<int> coor0 = {0, 0, 0, 0};
std::vector<std::vector<ScalarField> > vpTensor;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
std::vector<ScalarField> vpTensor_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
vpTensor_mu.push_back(*env().createLattice<ScalarField>(vpTensorName_[mu][nu]));
}
vpTensor.push_back(vpTensor_mu);
}
// Open output files if necessary
std::vector<CorrWriter *> writer;
std::vector<ScalarField> momphases;
if (!par().output.empty())
{
LOG(Message) << "Preparing output files..." << std::endl;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
// Open output files
std::string filename = par().output + "_"
+ std::to_string(mom[0])
+ std::to_string(mom[1])
+ std::to_string(mom[2]) + "."
+ std::to_string(env().getTrajectory());
if (env().getGrid()->IsBoss())
{
CorrWriter *writer_i = new CorrWriter(filename);
writer.push_back(writer_i);
write(*writer[i_p], "charge", q);
write(*writer[i_p], "mass", static_cast<TChargedProp *>(env().getModule(par().scalarProp))->par().mass);
}
// Calculate phase factors
tmp_vp1 = Complex(1.0,0.0);
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
for (unsigned int momcount = 0; momcount < mom[j]; ++momcount)
{
tmp_vp1 = tmp_vp1*(*phase_[j]);
}
}
tmp_vp1 = adj(tmp_vp1);
momphases.push_back(tmp_vp1);
}
}
// Do contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
peekSite(Anu0, peekLorentz(A, nu), coor0);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
<< std::endl;
Amu = peekLorentz(A, mu);
// free
prop1 = *prop0_; // S_0(0|x)
prop2 = Cshift(*prop0_, nu, -1); // S_0(0|x-a\hat{\nu})
// = S_0(a\hat{\nu}|x)
U_src = Complex(1.0,0.0);
vpContraction(tmp_vp1, prop1, prop2, U_src, mu);
vpTensor[mu][nu] = tmp_vp1;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp1, momphases,
"Pi_free_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// srcT
tmp_vp2 = tmp_vp1 * (-0.5)*q*q*Anu0*Anu0;
vpTensor[mu][nu] += tmp_vp2;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp2, momphases,
"Pi_srcT_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// snkT
tmp_vp2 = tmp_vp1 * (-0.5)*q*q*Amu*Amu;
vpTensor[mu][nu] += tmp_vp2;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp2, momphases,
"Pi_snkT_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// S
prop1 = *prop0_; // S_0(0|x)
prop2 = Cshift(*prop0_, nu, -1); // S_0(a\hat{\nu}|x)
U_src = ci*q*Anu0;
U_snk = ci*q*Amu;
vpContraction(tmp_vp1, prop1, prop2, U_src, U_snk, mu);
vpTensor[mu][nu] += tmp_vp1;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp1, momphases,
"Pi_S_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// 4C
prop1 = q*propQ; // q*S_1(0|x)
prop2 = Cshift(*prop0_, nu, -1); // S_0(a\hat{\nu}|x)
U_src = Complex(1.0,0.0);
U_snk = ci*q*Amu;
vpContraction(tmp_vp1, prop1, prop2, U_src, U_snk, mu);
U_src = ci*q*Anu0;
vpContraction(tmp_vp2, prop1, prop2, U_src, mu);
tmp_vp1 += tmp_vp2;
prop1 = *prop0_; // S_0(0|x)
prop2 = q*muPropQ[nu]; // q*S_1(a\hat{\nu}|x)
vpContraction(tmp_vp2, prop1, prop2, U_src, mu);
tmp_vp1 += tmp_vp2;
U_src = Complex(1.0,0.0);
U_snk = ci*q*Amu;
vpContraction(tmp_vp2, prop1, prop2, U_src, U_snk, mu);
tmp_vp1 += tmp_vp2;
vpTensor[mu][nu] += tmp_vp1;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp1, momphases,
"Pi_4C_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// X
prop1 = q*propQ; // q*S_1(0|x)
prop2 = q*muPropQ[nu]; // q*S_1(a\hat{\nu}|x)
U_src = Complex(1.0,0.0);
vpContraction(tmp_vp1, prop1, prop2, U_src, mu);
vpTensor[mu][nu] += tmp_vp1;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp1, momphases,
"Pi_X_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// 2E
prop1 = q*q*propSun; // q^2*S_\Sigma(0|x)
prop2 = Cshift(*prop0_, nu, -1); // S_0(a\hat{\nu}|x)
U_src = Complex(1.0,0.0);
vpContraction(tmp_vp1, prop1, prop2, U_src, mu);
prop1 = *prop0_; // S_0(0|x)
prop2 = q*q*Cshift(propSun, nu, -1); // q^2*S_\Sigma(0|x-a\hat{\nu})
//(Note: <S(0|x-a\hat{\nu})> = <S(a\hat{\nu}|x)>)
vpContraction(tmp_vp2, prop1, prop2, U_src, mu);
tmp_vp1 += tmp_vp2;
vpTensor[mu][nu] += tmp_vp1;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp1, momphases,
"Pi_2E_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// 2T
prop1 = q*q*propTad; // q^2*S_T(0|x)
prop2 = Cshift(*prop0_, nu, -1); // S_0(a\hat{\nu}|x)
U_src = Complex(1.0,0.0);
vpContraction(tmp_vp1, prop1, prop2, U_src, mu);
prop1 = *prop0_; // S_0(0|x)
prop2 = q*q*Cshift(propTad, nu, -1); // q^2*S_T(0|x-a\hat{\nu})
vpContraction(tmp_vp2, prop1, prop2, U_src, mu);
tmp_vp1 += tmp_vp2;
vpTensor[mu][nu] += tmp_vp1;
// Output if necessary
if (!par().output.empty())
{
writeVP(writer, tmp_vp1, momphases,
"Pi_2T_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// Output full VP if necessary
if (!par().output.empty())
{
writeVP(writer, vpTensor[mu][nu], momphases,
"Pi_"+std::to_string(mu)+"_"+std::to_string(nu));
}
}
}
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
if (env().getGrid()->IsBoss())
{
delete writer[i_p];
}
}
}
}
void TScalarVP::vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, ScalarField &u_snk, int mu)
{
// Note: this function assumes a point source is used.
vp = adj(prop_nu_x) * u_snk * Cshift(prop_0_x, mu, 1) * u_src;
vp -= Cshift(adj(prop_nu_x), mu, 1) * adj(u_snk) * prop_0_x * u_src;
vp = 2.0*real(vp);
}
void TScalarVP::vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, int mu)
{
// Note: this function assumes a point source is used.
vp = adj(prop_nu_x) * Cshift(prop_0_x, mu, 1) * u_src;
vp -= Cshift(adj(prop_nu_x), mu, 1) * prop_0_x * u_src;
vp = 2.0*real(vp);
}
void TScalarVP::writeVP(const std::vector<CorrWriter *> &writers, const ScalarField &vp,
const std::vector<ScalarField> &momphases, std::string dsetName)
{
std::vector<TComplex> vecBuf;
std::vector<Complex> result;
ScalarField vpPhase(env().getGrid());
for (unsigned int i_p = 0; i_p < momphases.size(); ++i_p)
{
vpPhase = vp*momphases[i_p];
sliceSum(vpPhase, vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
if (env().getGrid()->IsBoss())
{
write(*writers[i_p], dsetName, result);
}
}
}
void TScalarVP::momD1(ScalarField &s, FFT &fft)
{
EmField &A = *env().getObject<EmField>(par().emField);
ScalarField buf(env().getGrid()), result(env().getGrid()),
Amu(env().getGrid());
Complex ci(0.0,1.0);
result = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result - ci*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + ci*adj(*phase_[mu])*buf;
}
s = result;
}