1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/lanczos/Test_compressed_lanczos_gparity.cc
Christopher Kelly 33e4a0caee Imported changes from feature/gparity_HMC branch:
Rework of WilsonFlow class
		Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon
		Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const.
		smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset
		Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency
	        By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing
		Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors
	Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions
	To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev
	Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields
	Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique
	Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs
	Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 14:12:12 -04:00

486 lines
18 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_compressed_lanczos_gparity.cc
Copyright (C) 2017
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Leans heavily on Christoph Lehner's code
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/*
* Reimplement the badly named "multigrid" lanczos as compressed Lanczos using the features
* in Grid that were intended to be used to support blocked Aggregates, from
*/
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
using namespace std;
using namespace Grid;
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
void readConfiguration(LatticeGaugeFieldD &U,
const std::string &config,
bool is_cps_cfg = false){
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
typedef GaugeStatistics<ConjugateGimplD> GaugeStats;
FieldMetaData header;
NerscIO::readConfiguration<GaugeStats>(U, header, config);
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
}
//Lanczos parameters in CPS conventions
struct CPSLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
RealD, alpha,
RealD, beta,
int, ch_ord,
int, N_use,
int, N_get,
int, N_true_get,
RealD, stop_rsd,
int, maxits);
//Translations
ChebyParams getChebyParams() const{
ChebyParams out;
out.alpha = beta*beta; //aka lo
out.beta = alpha*alpha; //aka hi
out.Npoly = ch_ord+1;
return out;
}
int Nstop() const{ return N_true_get; }
int Nm() const{ return N_use; }
int Nk() const{ return N_get; }
};
//Maybe this class should be in the main library?
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis>
{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj> FineField;
LocalCoherenceLanczosScidac(GridBase *FineGrid,GridBase *CoarseGrid,
LinearOperatorBase<FineField> &FineOp,
int checkerboard)
// Base constructor
: LocalCoherenceLanczos<Fobj,CComplex,nbasis>(FineGrid,CoarseGrid,FineOp,checkerboard)
{};
void checkpointFine(std::string evecs_file,std::string evals_file)
{
assert(this->subspace.size()==nbasis);
emptyUserRecord record;
Grid::ScidacWriter WR(this->_FineGrid->IsBoss());
WR.open(evecs_file);
for(int k=0;k<nbasis;k++) {
WR.writeScidacFieldRecord(this->subspace[k],record);
}
WR.close();
XmlWriter WRx(evals_file);
write(WRx,"evals",this->evals_fine);
}
void checkpointFineRestore(std::string evecs_file,std::string evals_file)
{
this->evals_fine.resize(nbasis);
this->subspace.resize(nbasis,this->_FineGrid);
std::cout << GridLogIRL<< "checkpointFineRestore: Reading evals from "<<evals_file<<std::endl;
XmlReader RDx(evals_file);
read(RDx,"evals",this->evals_fine);
if(this->evals_fine.size() < nbasis) assert(0 && "Not enough fine evals to complete basis");
if(this->evals_fine.size() > nbasis){ //allow the use of precomputed evecs with a larger #evecs
std::cout << GridLogMessage << "Truncating " << this->evals_fine.size() << " evals to basis size " << nbasis << std::endl;
this->evals_fine.resize(nbasis);
}
std::cout << GridLogIRL<< "checkpointFineRestore: Reading evecs from "<<evecs_file<<std::endl;
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evecs_file);
for(int k=0;k<nbasis;k++) {
this->subspace[k].Checkerboard()=this->_checkerboard;
RD.readScidacFieldRecord(this->subspace[k],record);
}
RD.close();
}
void checkpointCoarse(std::string evecs_file,std::string evals_file)
{
int n = this->evec_coarse.size();
emptyUserRecord record;
Grid::ScidacWriter WR(this->_CoarseGrid->IsBoss());
WR.open(evecs_file);
for(int k=0;k<n;k++) {
WR.writeScidacFieldRecord(this->evec_coarse[k],record);
}
WR.close();
XmlWriter WRx(evals_file);
write(WRx,"evals",this->evals_coarse);
}
void checkpointCoarseRestore(std::string evecs_file,std::string evals_file,int nvec)
{
std::cout << "resizing coarse vecs to " << nvec<< std::endl;
this->evals_coarse.resize(nvec);
this->evec_coarse.resize(nvec,this->_CoarseGrid);
std::cout << GridLogIRL<< "checkpointCoarseRestore: Reading evals from "<<evals_file<<std::endl;
XmlReader RDx(evals_file);
read(RDx,"evals",this->evals_coarse);
assert(this->evals_coarse.size()==nvec);
emptyUserRecord record;
std::cout << GridLogIRL<< "checkpointCoarseRestore: Reading evecs from "<<evecs_file<<std::endl;
Grid::ScidacReader RD ;
RD.open(evecs_file);
for(int k=0;k<nvec;k++) {
RD.readScidacFieldRecord(this->evec_coarse[k],record);
}
RD.close();
}
};
struct Options{
std::vector<int> blockSize;
std::vector<int> GparityDirs;
int Ls;
RealD mass;
RealD M5;
RealD mobius_scale;
std::string config;
bool is_cps_cfg;
double coarse_relax_tol;
int smoother_ord;
CPSLanczosParams fine;
CPSLanczosParams coarse;
bool write_fine = false;
std::string write_fine_file;
bool read_fine = false;
std::string read_fine_file;
bool write_coarse = false;
std::string write_coarse_file;
bool read_coarse = false;
std::string read_coarse_file;
Options(){
blockSize = std::vector<int> ({2,2,2,2,2});
GparityDirs = std::vector<int> ({1,1,1}); //1 for each GP direction
Ls = 12;
mass = 0.01;
M5 = 1.8;
is_cps_cfg = false;
mobius_scale = 2.0;
fine.alpha = 2;
fine.beta = 0.1;
fine.ch_ord = 100;
fine.N_use = 70;
fine.N_get = 60;
fine.N_true_get = 60;
fine.stop_rsd = 1e-8;
fine.maxits = 10000;
coarse.alpha = 2;
coarse.beta = 0.1;
coarse.ch_ord = 100;
coarse.N_use = 200;
coarse.N_get = 190;
coarse.N_true_get = 190;
coarse.stop_rsd = 1e-8;
coarse.maxits = 10000;
coarse_relax_tol = 1e5;
smoother_ord = 20;
write_fine = false;
read_fine = false;
write_coarse = false;
read_coarse = false;
}
};
template<int nbasis>
void runTest(const Options &opt){
//Fine grids
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(opt.Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(opt.Ls,UGrid);
//Setup G-parity BCs
assert(Nd == 4);
std::vector<int> dirs4(4);
for(int i=0;i<3;i++) dirs4[i] = opt.GparityDirs[i];
dirs4[3] = 0; //periodic gauge BC in time
std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
ConjugateGimplD::setDirections(dirs4); //gauge BC
GparityWilsonImplD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = opt.GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
//Read the gauge field
LatticeGaugeField Umu(UGrid);
readConfiguration(Umu, opt.config, opt.is_cps_cfg);
//Setup the coarse grids
auto fineLatt = GridDefaultLatt();
Coordinate coarseLatt(4);
for (int d=0;d<4;d++){
coarseLatt[d] = fineLatt[d]/opt.blockSize[d]; assert(coarseLatt[d]*opt.blockSize[d]==fineLatt[d]);
}
std::cout << GridLogMessage<< " 5d coarse lattice is ";
for (int i=0;i<4;i++){
std::cout << coarseLatt[i]<<"x";
}
int cLs = opt.Ls/opt.blockSize[4]; assert(cLs*opt.blockSize[4]==opt.Ls);
std::cout << cLs<<std::endl;
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
//Dirac operator
double bmc = 1.;
double b = (opt.mobius_scale + bmc)/2.; // b = 1/2 [ (b+c) + (b-c) ]
double c = (opt.mobius_scale - bmc)/2.; // c = 1/2 [ (b+c) - (b-c) ]
GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, opt.mass, opt.M5, b,c,Params);
typedef GparityMobiusFermionD::FermionField FermionField;
SchurDiagTwoOperator<GparityMobiusFermionD, FermionField> SchurOp(action);
typedef GparityWilsonImplD::SiteSpinor SiteSpinor;
const CPSLanczosParams &fine = opt.fine;
const CPSLanczosParams &coarse = opt.coarse;
std::cout << GridLogMessage << "Keep " << fine.N_true_get << " fine vectors" << std::endl;
std::cout << GridLogMessage << "Keep " << coarse.N_true_get << " coarse vectors" << std::endl;
assert(coarse.N_true_get >= fine.N_true_get);
assert(nbasis<=fine.N_true_get);
LocalCoherenceLanczosScidac<SiteSpinor,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5,SchurOp,Odd);
std::cout << GridLogMessage << "Constructed LocalCoherenceLanczos" << std::endl;
//Compute and/or read fine evecs
if(opt.read_fine){
_LocalCoherenceLanczos.checkpointFineRestore(opt.read_fine_file + "_evecs.scidac", opt.read_fine_file + "_evals.xml");
}else{
std::cout << GridLogMessage << "Performing fine grid IRL" << std::endl;
std::cout << GridLogMessage << "Using Chebyshev alpha=" << fine.alpha << " beta=" << fine.beta << " ord=" << fine.ch_ord << std::endl;
_LocalCoherenceLanczos.calcFine(fine.getChebyParams(),
fine.Nstop(),fine.Nk(),fine.Nm(),
fine.stop_rsd,fine.maxits,0,0);
if(opt.write_fine){
std::cout << GridLogIRL<<"Checkpointing Fine evecs"<<std::endl;
_LocalCoherenceLanczos.checkpointFine(opt.write_fine_file + "_evecs.scidac", opt.write_fine_file + "_evals.xml");
}
}
//Block orthonormalise (this should be part of calcFine?)
std::cout << GridLogIRL<<"Orthogonalising"<<std::endl;
_LocalCoherenceLanczos.Orthogonalise();
std::cout << GridLogIRL<<"Orthogonaled"<<std::endl;
ChebyParams smoother = fine.getChebyParams();
smoother.Npoly = opt.smoother_ord+1;
if(opt.read_coarse){
_LocalCoherenceLanczos.checkpointCoarseRestore(opt.read_coarse_file + "_evecs.scidac", opt.read_coarse_file + "_evals.xml",coarse.Nstop());
}else{
std::cout << GridLogMessage << "Performing coarse grid IRL" << std::endl;
std::cout << GridLogMessage << "Using Chebyshev alpha=" << coarse.alpha << " beta=" << coarse.beta << " ord=" << coarse.ch_ord << std::endl;
_LocalCoherenceLanczos.calcCoarse(coarse.getChebyParams(), smoother, opt.coarse_relax_tol,
coarse.Nstop(), coarse.Nk() ,coarse.Nm(),
coarse.stop_rsd, coarse.maxits,
0,0);
if(opt.write_coarse){
std::cout << GridLogIRL<<"Checkpointing Coarse evecs"<<std::endl;
_LocalCoherenceLanczos.checkpointCoarse(opt.write_coarse_file + "_evecs.scidac", opt.write_coarse_file + "_evals.xml");
}
}
//Test the eigenvectors
//To remove high-frequency noise we apply a Chebyshev smoothing
Chebyshev<FermionField> cheb_smoother(smoother);
FermionField evec(FrbGrid);
FermionField evec_sm(FrbGrid); //smoothed
FermionField tmp(FrbGrid);
RealD eval;
for(int i=0;i<coarse.N_true_get;i++){
_LocalCoherenceLanczos.getFineEvecEval(evec, eval, i);
//Check unsmoothed evec
SchurOp.HermOp(evec, tmp);
tmp = tmp - eval*evec;
RealD norm_unsmoothed = sqrt(norm2(tmp));
//Check smoothed evec
cheb_smoother(SchurOp, evec, evec_sm);
SchurOp.HermOp(evec_sm, tmp);
tmp = tmp - eval*evec_sm;
RealD norm_smoothed = sqrt(norm2(tmp));
std::cout << GridLogMessage << "Eval " << eval << " unsmoothed resid " << norm_unsmoothed << " smoothed resid " << norm_smoothed << std::endl;
}
}
//Note: because we rely upon physical properties we must use a "real" gauge configuration
int main (int argc, char ** argv) {
Grid_init(&argc,&argv);
GridLogIRL.TimingMode(1);
Options opt;
int basis_size = 100;
if(argc < 3){
std::cout << GridLogMessage << "Usage: <exe> <config> <gparity dirs> <options>" << std::endl;
std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
std::cout << GridLogMessage << "Options:" << std::endl;
std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents (default 2.2.2.2.2)" << std::endl;
std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
std::cout << GridLogMessage << "--read_irl_coarse <filename>: Real the parameters file for the coarse Lanczos" << std::endl;
std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--write_coarse <filename stub>: Write coarse evecs/evals to filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--read_coarse <filename stub>: Read coarse evecs/evals from filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--smoother_ord : Set the Chebyshev order of the smoother (default 20)" << std::endl;
std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
std::cout << GridLogMessage << "--basis_size : Select the basis size from 100,200,300,350 (default 100)" << std::endl;
Grid_finalize();
return 1;
}
opt.config = argv[1];
GridCmdOptionIntVector(argv[2], opt.GparityDirs);
assert(opt.GparityDirs.size() == 3);
for(int i=3;i<argc;i++){
std::string sarg = argv[i];
if(sarg == "--Ls"){
opt.Ls = std::stoi(argv[i+1]);
std::cout << GridLogMessage << "Set Ls to " << opt.Ls << std::endl;
}else if(sarg == "--mass"){
std::istringstream ss(argv[i+1]); ss >> opt.mass;
std::cout << GridLogMessage << "Set quark mass to " << opt.mass << std::endl;
}else if(sarg == "--block"){
GridCmdOptionIntVector(argv[i+1], opt.blockSize);
assert(opt.blockSize.size() == 5);
std::cout << GridLogMessage << "Set block size to ";
for(int q=0;q<5;q++) std::cout << opt.blockSize[q] << " ";
std::cout << std::endl;
}else if(sarg == "--is_cps_cfg"){
opt.is_cps_cfg = true;
}else if(sarg == "--write_irl_templ"){
XmlWriter writer("irl_templ.xml");
write(writer,"Params", opt.fine);
Grid_finalize();
return 0;
}else if(sarg == "--read_irl_fine"){
std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
XmlReader reader(argv[i+1]);
read(reader, "Params", opt.fine);
}else if(sarg == "--read_irl_coarse"){
std::cout << GridLogMessage << "Reading coarse IRL params from " << argv[i+1] << std::endl;
XmlReader reader(argv[i+1]);
read(reader, "Params", opt.coarse);
}else if(sarg == "--write_fine"){
opt.write_fine = true;
opt.write_fine_file = argv[i+1];
}else if(sarg == "--read_fine"){
opt.read_fine = true;
opt.read_fine_file = argv[i+1];
}else if(sarg == "--write_coarse"){
opt.write_coarse = true;
opt.write_coarse_file = argv[i+1];
}else if(sarg == "--read_coarse"){
opt.read_coarse = true;
opt.read_coarse_file = argv[i+1];
}else if(sarg == "--smoother_ord"){
std::istringstream ss(argv[i+1]); ss >> opt.smoother_ord;
std::cout << GridLogMessage << "Set smoother order to " << opt.smoother_ord << std::endl;
}else if(sarg == "--coarse_relax_tol"){
std::istringstream ss(argv[i+1]); ss >> opt.coarse_relax_tol;
std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << opt.coarse_relax_tol << std::endl;
}else if(sarg == "--mobius_scale"){
std::istringstream ss(argv[i+1]); ss >> opt.mobius_scale;
std::cout << GridLogMessage << "Set Mobius scale to " << opt.mobius_scale << std::endl;
}else if(sarg == "--basis_size"){
basis_size = std::stoi(argv[i+1]);
std::cout << GridLogMessage << "Set basis size to " << basis_size << std::endl;
}
}
switch(basis_size){
case 100:
runTest<100>(opt); break;
case 200:
runTest<200>(opt); break;
case 300:
runTest<300>(opt); break;
case 350:
runTest<350>(opt); break;
default:
std::cout << GridLogMessage << "Unsupported basis size " << basis_size << std::endl;
assert(0);
}
Grid_finalize();
}