mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
adbc7c1188
of the 5D cayley form chiral fermions for the 5d matrix. With Ls entirely in the vector direction, s-hopping terms involve rotations. The serial dependence of the LDU inversion for Mobius and 4d even odd checkerboarding is removed by simply applying Ls^2 operations (vectorised many ways) as a dense matrix operation. This should give similar throughput but high flops (non-compulsory flops) but enable use of the KNL cache friendly kernels throughout the code. Ls is still constrained to be a multiple of Nsimd, which is as much as 8 for AVX512 with single precision.
302 lines
7.9 KiB
C++
302 lines
7.9 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.cc
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#include <Grid/Eigen/Dense>
|
|
#include <Grid.h>
|
|
|
|
|
|
namespace Grid {
|
|
namespace QCD {
|
|
/*
|
|
* Dense matrix versions of routines
|
|
*/
|
|
template<class Impl>
|
|
void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
|
|
{
|
|
this->MooeeInternal(psi,chi,DaggerYes,InverseYes);
|
|
}
|
|
|
|
template<class Impl>
|
|
void CayleyFermion5D<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
|
|
{
|
|
this->MooeeInternal(psi,chi,DaggerNo,InverseYes);
|
|
}
|
|
template<class Impl>
|
|
void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
|
|
const FermionField &phi,
|
|
FermionField &chi,
|
|
std::vector<RealD> &lower,
|
|
std::vector<RealD> &diag,
|
|
std::vector<RealD> &upper)
|
|
{
|
|
GridBase *grid=psi._grid;
|
|
int Ls = this->Ls;
|
|
int LLs = grid->_rdimensions[0];
|
|
int nsimd= Simd::Nsimd();
|
|
|
|
Vector<iSinglet<Simd> > u(LLs);
|
|
Vector<iSinglet<Simd> > l(LLs);
|
|
Vector<iSinglet<Simd> > d(LLs);
|
|
|
|
assert(Ls/LLs==nsimd);
|
|
assert(phi.checkerboard == psi.checkerboard);
|
|
|
|
chi.checkerboard=psi.checkerboard;
|
|
|
|
// just directly address via type pun
|
|
typedef typename Simd::scalar_type scalar_type;
|
|
scalar_type * u_p = (scalar_type *)&u[0];
|
|
scalar_type * l_p = (scalar_type *)&l[0];
|
|
scalar_type * d_p = (scalar_type *)&d[0];
|
|
|
|
for(int o=0;o<LLs;o++){ // outer
|
|
for(int i=0;i<nsimd;i++){ //inner
|
|
int s = o+i*LLs;
|
|
int ss = o*nsimd+i;
|
|
u_p[ss] = upper[s];
|
|
l_p[ss] = lower[s];
|
|
d_p[ss] = diag[s];
|
|
}}
|
|
|
|
PARALLEL_FOR_LOOP
|
|
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
|
|
|
|
alignas(64) SiteHalfSpinor hp;
|
|
alignas(64) SiteHalfSpinor hm;
|
|
alignas(64) SiteSpinor fp;
|
|
alignas(64) SiteSpinor fm;
|
|
|
|
for(int v=0;v<LLs;v++){
|
|
|
|
int vp=(v+1)%LLs;
|
|
int vm=(v+LLs-1)%LLs;
|
|
|
|
spProj5m(hp,psi[ss+vp]);
|
|
spProj5p(hm,psi[ss+vm]);
|
|
|
|
if ( vp<=v ) rotate(hp,hp,1);
|
|
if ( vm>=v ) rotate(hm,hm,nsimd-1);
|
|
|
|
hp=hp*0.5;
|
|
hm=hm*0.5;
|
|
spRecon5m(fp,hp);
|
|
spRecon5p(fm,hm);
|
|
|
|
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
|
|
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
|
|
const FermionField &phi,
|
|
FermionField &chi,
|
|
std::vector<RealD> &lower,
|
|
std::vector<RealD> &diag,
|
|
std::vector<RealD> &upper)
|
|
{
|
|
GridBase *grid=psi._grid;
|
|
int Ls = this->Ls;
|
|
int LLs = grid->_rdimensions[0];
|
|
int nsimd= Simd::Nsimd();
|
|
|
|
Vector<iSinglet<Simd> > u(LLs);
|
|
Vector<iSinglet<Simd> > l(LLs);
|
|
Vector<iSinglet<Simd> > d(LLs);
|
|
|
|
assert(Ls/LLs==nsimd);
|
|
assert(phi.checkerboard == psi.checkerboard);
|
|
|
|
chi.checkerboard=psi.checkerboard;
|
|
|
|
// just directly address via type pun
|
|
typedef typename Simd::scalar_type scalar_type;
|
|
scalar_type * u_p = (scalar_type *)&u[0];
|
|
scalar_type * l_p = (scalar_type *)&l[0];
|
|
scalar_type * d_p = (scalar_type *)&d[0];
|
|
|
|
for(int o=0;o<LLs;o++){ // outer
|
|
for(int i=0;i<nsimd;i++){ //inner
|
|
int s = o+i*LLs;
|
|
int ss = o*nsimd+i;
|
|
u_p[ss] = upper[s];
|
|
l_p[ss] = lower[s];
|
|
d_p[ss] = diag[s];
|
|
}}
|
|
|
|
PARALLEL_FOR_LOOP
|
|
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
|
|
|
|
alignas(64) SiteHalfSpinor hp;
|
|
alignas(64) SiteHalfSpinor hm;
|
|
alignas(64) SiteSpinor fp;
|
|
alignas(64) SiteSpinor fm;
|
|
|
|
for(int v=0;v<LLs;v++){
|
|
|
|
int vp=(v+1)%LLs;
|
|
int vm=(v+LLs-1)%LLs;
|
|
|
|
spProj5p(hp,psi[ss+vp]);
|
|
spProj5m(hm,psi[ss+vm]);
|
|
|
|
if ( vp<=v ) rotate(hp,hp,1);
|
|
if ( vm>=v ) rotate(hm,hm,nsimd-1);
|
|
|
|
hp=hp*0.5;
|
|
hm=hm*0.5;
|
|
spRecon5p(fp,hp);
|
|
spRecon5m(fm,hm);
|
|
|
|
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
|
|
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv)
|
|
{
|
|
int Ls=this->Ls;
|
|
int LLs = psi._grid->_rdimensions[0];
|
|
int vol = psi._grid->oSites()/LLs;
|
|
|
|
chi.checkerboard=psi.checkerboard;
|
|
|
|
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
|
|
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
|
|
|
|
for(int s=0;s<Ls;s++){
|
|
Pplus(s,s) = bee[s];
|
|
Pminus(s,s)= bee[s];
|
|
}
|
|
|
|
for(int s=0;s<Ls-1;s++){
|
|
Pminus(s,s+1) = -cee[s];
|
|
}
|
|
|
|
for(int s=0;s<Ls-1;s++){
|
|
Pplus(s+1,s) = -cee[s+1];
|
|
}
|
|
Pplus (0,Ls-1) = mass*cee[0];
|
|
Pminus(Ls-1,0) = mass*cee[Ls-1];
|
|
|
|
Eigen::MatrixXd PplusMat ;
|
|
Eigen::MatrixXd PminusMat;
|
|
|
|
if ( inv ) {
|
|
PplusMat =Pplus.inverse();
|
|
PminusMat=Pminus.inverse();
|
|
} else {
|
|
PplusMat =Pplus;
|
|
PminusMat=Pminus;
|
|
}
|
|
|
|
if(dag){
|
|
PplusMat.adjointInPlace();
|
|
PminusMat.adjointInPlace();
|
|
}
|
|
|
|
typedef typename SiteHalfSpinor::scalar_type scalar_type;
|
|
const int Nsimd=Simd::Nsimd();
|
|
Vector<iSinglet<Simd> > Matp(Ls*LLs);
|
|
Vector<iSinglet<Simd> > Matm(Ls*LLs);
|
|
|
|
for(int s2=0;s2<Ls;s2++){
|
|
for(int s1=0;s1<LLs;s1++){
|
|
int istride = LLs;
|
|
int ostride = 1;
|
|
Simd Vp;
|
|
Simd Vm;
|
|
scalar_type *sp = (scalar_type *)&Vp;
|
|
scalar_type *sm = (scalar_type *)&Vm;
|
|
for(int l=0;l<Nsimd;l++){
|
|
sp[l] = PplusMat (l*istride+s1*ostride ,s2);
|
|
sm[l] = PminusMat(l*istride+s1*ostride,s2);
|
|
}
|
|
Matp[LLs*s2+s1] = Vp;
|
|
Matm[LLs*s2+s1] = Vm;
|
|
}
|
|
}
|
|
|
|
// Dynamic allocate on stack to get per thread without serialised heap acces
|
|
PARALLEL_FOR_LOOP
|
|
for(auto site=0;site<vol;site++){
|
|
|
|
// SiteHalfSpinor *SitePplus =(SiteHalfSpinor *) alloca(LLs*sizeof(SiteHalfSpinor));
|
|
// SiteHalfSpinor *SitePminus=(SiteHalfSpinor *) alloca(LLs*sizeof(SiteHalfSpinor));
|
|
// SiteSpinor *SiteChi =(SiteSpinor *) alloca(LLs*sizeof(SiteSpinor));
|
|
|
|
Vector<SiteHalfSpinor> SitePplus(LLs);
|
|
Vector<SiteHalfSpinor> SitePminus(LLs);
|
|
Vector<SiteHalfSpinor> SiteChiP(LLs);
|
|
Vector<SiteHalfSpinor> SiteChiM(LLs);
|
|
Vector<SiteSpinor> SiteChi(LLs);
|
|
|
|
SiteHalfSpinor BcastP;
|
|
SiteHalfSpinor BcastM;
|
|
|
|
for(int s=0;s<LLs;s++){
|
|
int lex = s+LLs*site;
|
|
spProj5p(SitePplus[s] ,psi[lex]);
|
|
spProj5m(SitePminus[s],psi[lex]);
|
|
SiteChiP[s]=zero;
|
|
SiteChiM[s]=zero;
|
|
}
|
|
|
|
int s=0;
|
|
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
|
|
for(int s2=0;s2<LLs;s2++){ // Column loop of right hand side
|
|
vbroadcast(BcastP,SitePplus [s2],l);
|
|
vbroadcast(BcastM,SitePminus[s2],l);
|
|
for(int s1=0;s1<LLs;s1++){ // Column loop of reduction variables
|
|
SiteChiP[s1]=SiteChiP[s1]+Matp[LLs*s+s1]*BcastP;
|
|
SiteChiM[s1]=SiteChiM[s1]+Matm[LLs*s+s1]*BcastM;
|
|
}
|
|
s++;
|
|
}}
|
|
|
|
for(int s=0;s<LLs;s++){
|
|
int lex = s+LLs*site;
|
|
spRecon5p(SiteChi[s],SiteChiP[s]);
|
|
accumRecon5m(SiteChi[s],SiteChiM[s]);
|
|
chi[lex] = SiteChi[s]*0.5;
|
|
}
|
|
}
|
|
}
|
|
|
|
FermOp5dVecTemplateInstantiate(CayleyFermion5D);
|
|
|
|
}}
|