mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
233 lines
6.6 KiB
C++
233 lines
6.6 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: lib/qcd/spin/Dirac.h
|
|
|
|
Copyright (C) 2015
|
|
Copyright (C) 2016
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_QCD_DIRAC_H
|
|
#define GRID_QCD_DIRAC_H
|
|
|
|
// Gamma matrices using the code generated by the Mathematica notebook
|
|
// gamma-gen/gamma-gen.nb in Gamma.cc & Gamma.h
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#include <Grid/qcd/spin/Gamma.h>
|
|
|
|
namespace Grid {
|
|
|
|
// Dirac algebra adjoint operator (not in QCD:: to overload other adj)
|
|
inline QCD::Gamma adj(const QCD::Gamma &g)
|
|
{
|
|
return QCD::Gamma (QCD::Gamma::adj[g.g]);
|
|
}
|
|
|
|
namespace QCD {
|
|
|
|
// Dirac algebra mutliplication operator
|
|
inline Gamma operator*(const Gamma &g1, const Gamma &g2)
|
|
{
|
|
return Gamma (Gamma::mul[g1.g][g2.g]);
|
|
}
|
|
|
|
// general left multiply
|
|
template<class vtype>
|
|
inline auto operator*(const Gamma &G, const iScalar<vtype> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal=G*arg._internal;
|
|
return ret;
|
|
}
|
|
|
|
template<class vtype,int N>
|
|
inline auto operator*(const Gamma &G, const iVector<vtype, N> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N>>::type
|
|
{
|
|
iVector<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
ret._internal[i]=G*arg._internal[i];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template<class vtype, int N>
|
|
inline auto operator*(const Gamma &G, const iMatrix<vtype, N> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
|
|
{
|
|
iMatrix<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<N;j++){
|
|
ret._internal[i][j]=G*arg._internal[i][j];
|
|
}}
|
|
return ret;
|
|
}
|
|
|
|
// general right multiply
|
|
template<class vtype>
|
|
inline auto operator*(const iScalar<vtype> &arg, const Gamma &G)
|
|
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal=arg._internal*G;
|
|
return ret;
|
|
}
|
|
|
|
template<class vtype, int N>
|
|
inline auto operator * (const iMatrix<vtype, N> &arg, const Gamma &G)
|
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
|
|
{
|
|
iMatrix<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<N;j++){
|
|
ret._internal[i][j]=arg._internal[i][j]*G;
|
|
}}
|
|
return ret;
|
|
}
|
|
|
|
// Gamma-left matrices gL_mu = g_mu*(1 - g5)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
class GammaL
|
|
{
|
|
public:
|
|
typedef Gamma::Algebra Algebra;
|
|
Gamma gamma;
|
|
public:
|
|
GammaL(const Algebra initg): gamma(initg) {}
|
|
GammaL(const Gamma initg): gamma(initg) {}
|
|
};
|
|
|
|
// vector multiply
|
|
template<class vtype>
|
|
inline auto operator*(const GammaL &gl, const iVector<vtype, Ns> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ns>, SpinorIndex>::value, iVector<vtype, Ns>>::type
|
|
{
|
|
iVector<vtype, Ns> buf;
|
|
|
|
buf(0) = 0.;
|
|
buf(1) = 0.;
|
|
buf(2) = 2.*arg(2);
|
|
buf(3) = 2.*arg(3);
|
|
|
|
return gl.gamma*buf;
|
|
};
|
|
|
|
// matrix left multiply
|
|
template<class vtype>
|
|
inline auto operator*(const GammaL &gl, const iMatrix<vtype, Ns> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ns>, SpinorIndex>::value, iMatrix<vtype, Ns>>::type
|
|
{
|
|
iMatrix<vtype, Ns> buf;
|
|
|
|
for(unsigned int i = 0; i < Ns; ++i)
|
|
{
|
|
buf(0, i) = 0.;
|
|
buf(1, i) = 0.;
|
|
buf(2, i) = 2.*arg(2, i);
|
|
buf(3, i) = 2.*arg(3, i);
|
|
}
|
|
|
|
return gl.gamma*buf;
|
|
};
|
|
|
|
// matrix right multiply
|
|
template<class vtype>
|
|
inline auto operator*(const iMatrix<vtype, Ns> &arg, const GammaL &gl)
|
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ns>, SpinorIndex>::value, iMatrix<vtype, Ns>>::type
|
|
{
|
|
iMatrix<vtype, Ns> buf;
|
|
|
|
buf = arg*gl.gamma;
|
|
for(unsigned int i = 0; i < Ns; ++i)
|
|
{
|
|
buf(i, 0) = 0.;
|
|
buf(i, 1) = 0.;
|
|
buf(i, 2) = 2.*buf(i, 2);
|
|
buf(i, 3) = 2.*buf(i, 3);
|
|
}
|
|
|
|
return buf;
|
|
};
|
|
|
|
//general left multiply
|
|
template<class vtype>
|
|
inline auto operator*(const GammaL &gl, const iScalar<vtype> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal=gl*arg._internal;
|
|
return ret;
|
|
}
|
|
|
|
template<class vtype,int N>
|
|
inline auto operator*(const GammaL &gl, const iVector<vtype, N> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N>>::type
|
|
{
|
|
iVector<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
ret._internal[i]=gl*arg._internal[i];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template<class vtype, int N>
|
|
inline auto operator*(const GammaL &gl, const iMatrix<vtype, N> &arg)
|
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
|
|
{
|
|
iMatrix<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<N;j++){
|
|
ret._internal[i][j]=gl*arg._internal[i][j];
|
|
}}
|
|
return ret;
|
|
}
|
|
|
|
//general right multiply
|
|
template<class vtype>
|
|
inline auto operator*(const iScalar<vtype> &arg, const GammaL &gl)
|
|
->typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype>>::type
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal=arg._internal*gl;
|
|
return ret;
|
|
}
|
|
|
|
template<class vtype, int N>
|
|
inline auto operator * (const iMatrix<vtype, N> &arg, const GammaL &gl)
|
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N>>::type
|
|
{
|
|
iMatrix<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
for(int j=0;j<N;j++){
|
|
ret._internal[i][j]=arg._internal[i][j]*gl;
|
|
}}
|
|
return ret;
|
|
}
|
|
|
|
}}
|
|
|
|
#endif
|