1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/qdpxx/Test_qdpxx_munprec.cc

626 lines
18 KiB
C++
Executable File

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/qdpxx/Test_qdpxx_munprec.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid.h>
int Ls=8;
double M5=1.6;
double mq=0.01;
double zolo_lo = 0.1;
double zolo_hi = 2.0;
double mobius_scale=2.0;
enum ChromaAction {
DWF, // CPS style preconditioning
WilsonFermion, // Wilson
HwPartFracZolo, // KEK's approach
HwContFracZolo, // Edwards, Kennedy et al prefer this
HwPartFracTanh, //
HwContFracTanh, //
HwCayleyZolo, // Chiu Optimal
HtCayleyZolo, //
HmCayleyZolo, // Scaled shamir 13
HwCayleyTanh, // Scaled shamir
HtCayleyTanh, // Plain old DWF.
HmCayleyTanh, // Scaled shamir 13
HtContFracTanh,
HtContFracZolo
};
void calc_grid (ChromaAction action,Grid::QCD::LatticeGaugeField & lat, Grid::QCD::LatticeFermion &src, Grid::QCD::LatticeFermion &res,int dag);
void calc_chroma (ChromaAction action,Grid::QCD::LatticeGaugeField & lat, Grid::QCD::LatticeFermion &src, Grid::QCD::LatticeFermion &res,int dag);
#include <chroma.h>
#include <actions/ferm/invert/syssolver_linop_cg_array.h>
#include <actions/ferm/invert/syssolver_linop_aggregate.h>
namespace Chroma {
class ChromaWrapper {
public:
typedef multi1d<LatticeColorMatrix> U;
typedef LatticeFermion T4;
typedef multi1d<LatticeFermion> T5;
static void ImportGauge(Grid::QCD::LatticeGaugeField & gr,
QDP::multi1d<QDP::LatticeColorMatrix> & ch)
{
Grid::QCD::LorentzColourMatrix LCM;
Grid::Complex cc;
QDP::ColorMatrix cm;
QDP::Complex c;
std::vector<int> x(4);
QDP::multi1d<int> cx(4);
std::vector<int> gd= gr._grid->GlobalDimensions();
for (x[0]=0;x[0]<gd[0];x[0]++){
for (x[1]=0;x[1]<gd[1];x[1]++){
for (x[2]=0;x[2]<gd[2];x[2]++){
for (x[3]=0;x[3]<gd[3];x[3]++){
cx[0] = x[0];
cx[1] = x[1];
cx[2] = x[2];
cx[3] = x[3];
Grid::peekSite(LCM,gr,x);
for(int mu=0;mu<4;mu++){
for(int i=0;i<3;i++){
for(int j=0;j<3;j++){
cc = LCM(mu)()(i,j);
c = QDP::cmplx(QDP::Real(real(cc)),QDP::Real(imag(cc)));
QDP::pokeColor(cm,c,i,j);
}}
QDP::pokeSite(ch[mu],cm,cx);
/*
std::cout << "("<<x[0]<<",";
std::cout << x[1]<<",";
std::cout << x[2]<<",";
std::cout << x[3]<<") "<< Grid::norm2(LCM(mu)) << " " <<QDP::norm2(cm)<<std::endl ;
*/
}
}}}}
}
static void ImportFermion(Grid::QCD::LatticeFermion & gr,
QDP::multi1d<QDP::LatticeFermion> & ch )
{
Grid::QCD::SpinColourVector F;
Grid::Complex c;
QDP::Fermion cF;
QDP::SpinVector cS;
QDP::Complex cc;
std::vector<int> x(5);
QDP::multi1d<int> cx(4);
std::vector<int> gd= gr._grid->GlobalDimensions();
for (x[0]=0;x[0]<gd[0];x[0]++){
for (x[1]=0;x[1]<gd[1];x[1]++){
for (x[2]=0;x[2]<gd[2];x[2]++){
for (x[3]=0;x[3]<gd[3];x[3]++){
for (x[4]=0;x[4]<gd[4];x[4]++){
int s = x[0];
cx[0] = x[1];
cx[1] = x[2];
cx[2] = x[3];
cx[3] = x[4];
Grid::peekSite(F,gr,x);
for(int j=0;j<3;j++){
for(int sp=0;sp<4;sp++){
c= F()(sp)(j) ;
cc = QDP::cmplx(QDP::Real(real(c)),QDP::Real(imag(c)));
QDP::pokeSpin(cS,cc,sp);
}
QDP::pokeColor(cF,cS,j);
}
QDP::pokeSite(ch[s],cF,cx);
}}}}}
}
static void ExportFermion(Grid::QCD::LatticeFermion & gr,
QDP::multi1d<QDP::LatticeFermion> & ch )
{
Grid::QCD::SpinColourVector F;
Grid::Complex c;
QDP::Fermion cF;
QDP::SpinVector cS;
QDP::Complex cc;
std::vector<int> x(5);
QDP::multi1d<int> cx(4);
std::vector<int> gd= gr._grid->GlobalDimensions();
for (x[0]=0;x[0]<gd[0];x[0]++){
for (x[1]=0;x[1]<gd[1];x[1]++){
for (x[2]=0;x[2]<gd[2];x[2]++){
for (x[3]=0;x[3]<gd[3];x[3]++){
for (x[4]=0;x[4]<gd[4];x[4]++){
int s = x[0];
cx[0] = x[1];
cx[1] = x[2];
cx[2] = x[3];
cx[3] = x[4];
cF = QDP::peekSite(ch[s],cx);
for(int sp=0;sp<4;sp++){
for(int j=0;j<3;j++){
cS =QDP::peekColor(cF,j);
cc =QDP::peekSpin(cS,sp);
c = Grid::Complex(QDP::toDouble(QDP::real(cc)),
QDP::toDouble(QDP::imag(cc)));
F()(sp)(j) = c;
}
}
Grid::pokeSite(F,gr,x);
}}}}}
}
static Handle< LinearOperatorArray<T4> > GetLinOp (U &u, ChromaAction parms)
{
QDP::Real _mq(mq);
QDP::Real eps_lo(zolo_lo);
QDP::Real eps_hi(zolo_hi);
QDP::Real scale(mobius_scale);
QDP::multi1d<int> bcs(QDP::Nd);
bcs[0] = bcs[1] = bcs[2] = bcs[3] = 1;
Chroma::Handle<Chroma::FermBC<T4,U,U> > fbc(new Chroma::SimpleFermBC< T4, U, U >(bcs));
Chroma::Handle<Chroma::CreateFermState<T4,U,U> > cfs( new Chroma::CreateSimpleFermState<T4,U,U>(fbc));
Chroma::GroupXML_t invparm;
invparm.xml=std::string(
" <InvertParam>\n"
" <invType>CG_INVERTER</invType>\n"
" <RsdCG>1.0e-9</RsdCG>\n"
" <MaxCG>3000</MaxCG>\n"
" </InvertParam>"
);
invparm.id=std::string("CG_INVERTER");
invparm.path=std::string("/InvertParam");
if ( (parms == HtCayleyTanh)|| (parms==DWF) ) {
Chroma::UnprecDWFermActArray S_f(cfs, M5, _mq, Ls);
Chroma::Handle< Chroma::FermState<T4,U,U> > fs( S_f.createState(u) );
Chroma::Handle< Chroma::LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,_mq));
return M;
}
if ( parms == HwCayleyTanh ) {
QDP::Real b5 = 0.5;
QDP::Real c5 = 0.5;
Chroma::UnprecNEFFermActArray S_f(cfs, M5,b5,c5, _mq, Ls);
Chroma::Handle< Chroma::FermState<T4,U,U> > fs( S_f.createState(u) );
Chroma::Handle< Chroma::LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,_mq));
return M;
}
if ( parms == HmCayleyTanh ) {
Real b5 = 0.5*(scale +1.0);
Real c5 = 0.5*(scale -1.0);
UnprecNEFFermActArray S_f(cfs, M5,b5,c5, _mq, Ls);
Handle< FermState<T4,U,U> > fs( S_f.createState(u) );
Handle< LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,_mq));
return M;
}
if ( parms == HwCayleyZolo ) {
UnprecZoloNEFFermActArrayParams params;
params.OverMass=M5;
params.Mass=_mq;
params.b5=0.5;
params.c5=0.5;
params.N5=Ls;
params.approximation_type = COEFF_TYPE_ZOLOTAREV;
params.ApproxMin=eps_lo;
params.ApproxMax=eps_hi;
UnprecZoloNEFFermActArray S_f(cfs, params);
Handle< FermState<T4,U,U> > fs( S_f.createState(u) );
Handle< LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,_mq));
return M;
}
if ( parms == HtCayleyZolo ) {
UnprecZoloNEFFermActArrayParams params;
params.OverMass=M5;
params.Mass=_mq;
params.b5=1.0;
params.c5=0.0;
params.N5=Ls;
params.approximation_type = COEFF_TYPE_ZOLOTAREV;
params.ApproxMin=eps_lo;
params.ApproxMax=eps_hi;
UnprecZoloNEFFermActArray S_f(cfs, params);
Handle< FermState<T4,U,U> > fs( S_f.createState(u) );
Handle< LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,_mq));
return M;
}
if ( parms == HmCayleyZolo ) {
UnprecZoloNEFFermActArrayParams params;
params.OverMass=M5;
params.Mass=_mq;
params.b5= 0.5*(mobius_scale +1.0);
params.c5= 0.5*(mobius_scale -1.0);
params.N5=Ls;
params.approximation_type = COEFF_TYPE_ZOLOTAREV;
params.ApproxMin=eps_lo;
params.ApproxMax=eps_hi;
UnprecZoloNEFFermActArray S_f(cfs, params);
Handle< FermState<T4,U,U> > fs( S_f.createState(u) );
Handle< LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,_mq));
return M;
}
if ( parms == HwPartFracZolo ) {
if ( Ls%2 == 0 ) {
printf("Ls is not odd\n");
exit(-1);
}
UnprecOvExtFermActArrayParams param;
param.OverMass=M5;
param.Mass=_mq;
param.RatPolyDeg = Ls;
param.ApproxMin =eps_lo;
param.ApproxMax =eps_hi;
param.b5 =1.0;
param.c5 =1.0;
param.approximation_type=COEFF_TYPE_ZOLOTAREV;
// param.approximation_type=COEFF_TYPE_TANH_UNSCALED;
// param.approximation_type=COEFF_TYPE_TANH;
param.tuning_strategy_xml=
"<TuningStrategy><Name>OVEXT_CONSTANT_STRATEGY</Name></TuningStrategy>\n";
UnprecOvExtFermActArray S_f(cfs,param);
Handle< FermState<T4,U,U> > fs( S_f.createState(u) );
Handle< LinearOperatorArray<T4> > M(S_f.linOp(fs));
return M;
}
if ( parms == HwContFracZolo ) {
UnprecOvlapContFrac5DFermActParams param;
param.Mass=_mq; // How is M5 set? Wilson mass In AuxFermAct
param.ApproxMin=eps_lo;
param.ApproxMax=eps_hi;
param.approximation_type=COEFF_TYPE_ZOLOTAREV;
param.RatPolyDeg=Ls;
// The following is why I think Chroma made some directional errors:
param.AuxFermAct= std::string(
"<AuxFermAct>\n"
" <FermAct>UNPRECONDITIONED_WILSON</FermAct>\n"
" <Mass>-1.8</Mass>\n"
" <b5>1</b5>\n"
" <c5>0</c5>\n"
" <MaxCG>1000</MaxCG>\n"
" <RsdCG>1.0e-9</RsdCG>\n"
" <FermionBC>\n"
" <FermBC>SIMPLE_FERMBC</FermBC>\n"
" <boundary>1 1 1 1</boundary>\n"
" </FermionBC> \n"
"</AuxFermAct>"
);
param.AuxFermActGrp= std::string("");
UnprecOvlapContFrac5DFermActArray S_f(fbc,param);
Handle< FermState<T4,U,U> > fs( S_f.createState(u) );
Handle< LinearOperatorArray<T4> > M(S_f.linOp(fs));
return M;
}
assert(0);
}
static Chroma::Handle< Chroma::SystemSolver<QDP::LatticeFermion> > GetSolver(QDP::multi1d<QDP::LatticeColorMatrix> &u, ChromaAction parms)
{
QDP::multi1d<int> bcs(Nd);
bcs[0] = bcs[1] = bcs[2] = bcs[3] = 1;
Chroma::Handle<Chroma::FermBC<T4,U,U> > fbc(new Chroma::SimpleFermBC< T4, U, U >(bcs));
Chroma::Handle<Chroma::CreateFermState<T4,U,U> > cfs( new Chroma::CreateSimpleFermState<T4,U,U>(fbc));
Chroma::GroupXML_t invparm;
invparm.xml=std::string(
" <InvertParam>\n"
" <invType>CG_INVERTER</invType>\n"
" <RsdCG>1.0e-10</RsdCG>\n"
" <MaxCG>3000</MaxCG>\n"
" </InvertParam>"
);
invparm.id=std::string("CG_INVERTER");
invparm.path=std::string("/InvertParam");
Chroma::UnprecDWFermActArray S_f(cfs, M5, mq, Ls);
std::cout << "GetSolver: DWF 4d prec "<<std::endl;
std::cout << "GetSolver: M5 "<<M5<<std::endl;
std::cout << "GetSolver: mq "<<mq<<std::endl;
std::cout << "GetSolver: Ls "<<Ls<<std::endl;
Chroma::Handle< Chroma::FermState<T4,U,U> > fs( S_f.createState(u) );
Chroma::Handle< LinearOperatorArray<T4> > M(S_f.unprecLinOp(fs,mq));
return S_f.qprop(fs,invparm);
}
};
}
int main (int argc,char **argv )
{
/********************************************************
* Setup QDP
*********************************************************/
Chroma::initialize(&argc,&argv);
Chroma::WilsonTypeFermActs4DEnv::registerAll();
/********************************************************
* Setup Grid
*********************************************************/
Grid::Grid_init(&argc,&argv);
Grid::GridCartesian * UGrid = Grid::QCD::SpaceTimeGrid::makeFourDimGrid(Grid::GridDefaultLatt(),
Grid::GridDefaultSimd(Grid::QCD::Nd,Grid::vComplex::Nsimd()),
Grid::GridDefaultMpi());
std::vector<int> gd = UGrid->GlobalDimensions();
QDP::multi1d<int> nrow(QDP::Nd);
for(int mu=0;mu<4;mu++) nrow[mu] = gd[mu];
QDP::Layout::setLattSize(nrow);
QDP::Layout::create();
Grid::GridCartesian * FGrid = Grid::QCD::SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
Grid::QCD::LatticeGaugeField lat(UGrid);
Grid::QCD::LatticeFermion src(FGrid);
Grid::QCD::LatticeFermion res_chroma(FGrid);
Grid::QCD::LatticeFermion res_grid (FGrid);
std::vector<ChromaAction> ActionList({
HtCayleyTanh, // Plain old DWF.
HmCayleyTanh,
HwCayleyTanh,
HtCayleyZolo, // Plain old DWF.
HmCayleyZolo,
HwCayleyZolo
});
std::vector<std::string> ActionName({
"HtCayleyTanh",
"HmCayleyTanh",
"HwCayleyTanh",
"HtCayleyZolo",
"HmCayleyZolo",
"HwCayleyZolo"
});
for(int i=0;i<ActionList.size();i++) {
std::cout << "*****************************"<<std::endl;
std::cout << "Action "<<ActionName[i]<<std::endl;
std::cout << "*****************************"<<std::endl;
for(int dag=0;dag<2;dag++) {
std::cout << "Dag = "<<dag<<std::endl;
calc_grid (ActionList[i],lat,src,res_grid,dag);
std::cout << "Norm of Grid DWF multiply "<<Grid::norm2(res_grid)<<std::endl;
calc_chroma(ActionList[i],lat,src,res_chroma,dag);
std::cout << "Norm of chroma DWF multiply "<<Grid::norm2(res_chroma)<<std::endl;
res_chroma=res_chroma - res_grid;
std::cout << "Norm of difference "<<Grid::norm2(res_chroma)<<std::endl;
}
}
std::cout << "Finished test "<<std::endl;
Chroma::finalize();
}
void calc_chroma(ChromaAction action,Grid::QCD::LatticeGaugeField & lat, Grid::QCD::LatticeFermion &src, Grid::QCD::LatticeFermion &res,int dag)
{
QDP::multi1d<QDP::LatticeColorMatrix> u(4);
// Chroma::HotSt(u);
Chroma::ChromaWrapper::ImportGauge(lat,u) ;
QDP::multi1d<QDP::LatticeFermion> check(Ls);
QDP::multi1d<QDP::LatticeFermion> result(Ls);
QDP::multi1d<QDP::LatticeFermion> psi(Ls);
Chroma::ChromaWrapper::ImportFermion(src,psi);
for(int mu=0;mu<4;mu++){
std::cout <<"Imported Gauge norm ["<<mu<<"] "<< QDP::norm2(u[mu])<<std::endl;
}
std::cout <<"Imported Fermion norm "<< QDP::norm2(psi)<<std::endl;
typedef QDP::LatticeFermion T;
typedef QDP::multi1d<QDP::LatticeColorMatrix> U;
auto linop =Chroma::ChromaWrapper::GetLinOp(u, action);
printf("Calling Chroma Linop\n"); fflush(stdout);
if ( dag )
(*linop)(check,psi,Chroma::MINUS);
else
(*linop)(check,psi,Chroma::PLUS);
printf("Called Chroma Linop\n"); fflush(stdout);
Chroma::ChromaWrapper::ExportFermion(res,check) ;
}
void calc_grid(ChromaAction action,Grid::QCD::LatticeGaugeField & Umu, Grid::QCD::LatticeFermion &src, Grid::QCD::LatticeFermion &res,int dag)
{
using namespace Grid;
using namespace Grid::QCD;
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
Grid::GridCartesian * UGrid = (Grid::GridCartesian *) Umu._grid;
Grid::GridCartesian * FGrid = (Grid::GridCartesian *) src._grid;
Grid::GridRedBlackCartesian * UrbGrid = Grid::QCD::SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
Grid::GridRedBlackCartesian * FrbGrid = Grid::QCD::SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
Grid::GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
Grid::GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
Grid::gaussian(RNG5,src);
Grid::gaussian(RNG5,res);
Grid::QCD::SU3::HotConfiguration(RNG4,Umu);
/*
Grid::QCD::LatticeColourMatrix U(UGrid);
U=Grid::zero;
for(int nn=0;nn<Grid::QCD::Nd;nn++){
if ( nn>=4 ) {
Grid::PokeIndex<LorentzIndex>(Umu,U,nn);
}
}
*/
Grid::RealD _mass=mq;
Grid::RealD _M5 =M5;
if ( action == HtCayleyTanh ) {
Grid::QCD::DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5);
std::cout << Grid::GridLogMessage <<" Calling domain wall multiply "<<std::endl;
if ( dag )
Ddwf.Mdag(src,res);
else
Ddwf.M(src,res);
return;
}
if ( action == HmCayleyZolo ) {
Grid::Real _b = 0.5*(mobius_scale +1.0);
Grid::Real _c = 0.5*(mobius_scale -1.0);
Grid::QCD::MobiusZolotarevFermionR D(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5,_b,_c,zolo_lo,zolo_hi);
std::cout << Grid::GridLogMessage <<" Calling mobius zolo multiply "<<std::endl;
if ( dag )
D.Mdag(src,res);
else
D.M(src,res);
return;
}
if ( action == HtCayleyZolo ) {
Grid::QCD::ShamirZolotarevFermionR D(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5,zolo_lo,zolo_hi);
std::cout << Grid::GridLogMessage <<" Calling shamir zolo multiply "<<std::endl;
if ( dag )
D.Mdag(src,res);
else
D.M(src,res);
return;
}
/*
if ( action == HmCayleyTanh ) {
Grid::Real _b = 0.5*(mobius_scale +1.0);
Grid::Real _c = 0.5*(mobius_scale -1.0);
Grid::QCD::MobiusFermionR D(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5,_b,_c);
std::cout << Grid::GridLogMessage <<" Calling mobius tanh multiply "<<std::endl;
if ( dag )
D.Mdag(src,res);
else
D.M(src,res);
return;
}
*/
if ( action == HmCayleyTanh ) {
Grid::QCD::ScaledShamirFermionR D(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5,mobius_scale);
std::cout << Grid::GridLogMessage <<" Calling scaled shamir multiply "<<std::endl;
if ( dag )
D.Mdag(src,res);
else
D.M(src,res);
return;
}
if ( action == HwCayleyTanh ) {
Grid::QCD::OverlapWilsonCayleyTanhFermionR D(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5,1.0);
if ( dag )
D.Mdag(src,res);
else
D.M(src,res);
return;
}
if ( action == HwCayleyZolo ) {
Grid::QCD::OverlapWilsonCayleyZolotarevFermionR D(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,_mass,_M5,zolo_lo,zolo_hi);
if ( dag )
D.Mdag(src,res);
else
D.M(src,res);
return;
}
assert(0);
}