mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
565 lines
20 KiB
C++
565 lines
20 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Hadrons/Modules/MScalar/ScalarVP.cc
|
|
|
|
Copyright (C) 2015-2018
|
|
|
|
Author: Antonin Portelli <antonin.portelli@me.com>
|
|
Author: James Harrison <jch1g10@soton.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Hadrons/Modules/MScalar/ChargedProp.hpp>
|
|
#include <Hadrons/Modules/MScalar/ScalarVP.hpp>
|
|
#include <Hadrons/Modules/MScalar/Scalar.hpp>
|
|
|
|
using namespace Grid;
|
|
using namespace Hadrons;
|
|
using namespace MScalar;
|
|
|
|
/*
|
|
* Scalar QED vacuum polarisation up to O(alpha)
|
|
*
|
|
* Conserved vector 2-point function diagram notation:
|
|
* _______
|
|
* / \
|
|
* U_nu * * U_mu
|
|
* \_______/
|
|
*
|
|
* ( adj(S(a\hat{nu}|x)) U_mu(x) S(0|x+a\hat{mu}) U_nu(0) )
|
|
* = 2 Re( - )
|
|
* ( adj(S(a\hat{nu}|x+a\hat{mu})) adj(U_mu(x)) S(0|x) U_nu(0) )
|
|
*
|
|
*
|
|
* _______
|
|
* / \
|
|
* free = 1 * * 1
|
|
* \_______/
|
|
*
|
|
*
|
|
*
|
|
* _______
|
|
* / \
|
|
* S = iA_nu * * iA_mu
|
|
* \_______/
|
|
*
|
|
*
|
|
* Delta_1
|
|
* ___*___
|
|
* / \
|
|
* X = 1 * * 1
|
|
* \___*___/
|
|
* Delta_1
|
|
*
|
|
* Delta_1 Delta_1
|
|
* ___*___ ___*___
|
|
* / \ / \
|
|
* 1 * * iA_mu + iA_nu * * 1
|
|
* \_______/ \_______/
|
|
* 4C = _______ _______
|
|
* / \ / \
|
|
* + 1 * * iA_mu + iA_nu * * 1
|
|
* \___*___/ \___*___/
|
|
* Delta_1 Delta_1
|
|
*
|
|
* Delta_1 Delta_1
|
|
* _*___*_ _______
|
|
* / \ / \
|
|
* 2E = 1 * * 1 + 1 * * 1
|
|
* \_______/ \_*___*_/
|
|
* Delta_1 Delta_1
|
|
*
|
|
* Delta_2
|
|
* ___*___ _______
|
|
* / \ / \
|
|
* 2T = 1 * * 1 + 1 * * 1
|
|
* \_______/ \___*___/
|
|
* Delta_2
|
|
*
|
|
*
|
|
* _______
|
|
* / \
|
|
* srcT = -A_nu^2/2 * * 1
|
|
* \_______/
|
|
*
|
|
*
|
|
*
|
|
* _______
|
|
* / \
|
|
* snkT = 1 * * -A_mu^2/2
|
|
* \_______/
|
|
*
|
|
* Full VP to O(alpha) = free + q^2*(S+X+4C+2E+2T+srcT+snkT)
|
|
*/
|
|
|
|
/******************************************************************************
|
|
* TScalarVP implementation *
|
|
******************************************************************************/
|
|
// constructor /////////////////////////////////////////////////////////////////
|
|
TScalarVP::TScalarVP(const std::string name)
|
|
: Module<ScalarVPPar>(name)
|
|
{}
|
|
|
|
// dependencies/products ///////////////////////////////////////////////////////
|
|
std::vector<std::string> TScalarVP::getInput(void)
|
|
{
|
|
prop0Name_ = par().scalarProp + "_0";
|
|
propQName_ = par().scalarProp + "_Q";
|
|
propSunName_ = par().scalarProp + "_Sun";
|
|
propTadName_ = par().scalarProp + "_Tad";
|
|
|
|
std::vector<std::string> in = {par().emField, prop0Name_, propQName_,
|
|
propSunName_, propTadName_};
|
|
|
|
return in;
|
|
}
|
|
|
|
std::vector<std::string> TScalarVP::getOutput(void)
|
|
{
|
|
std::vector<std::string> out;
|
|
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
// out.push_back(getName() + "_propQ_" + std::to_string(mu));
|
|
|
|
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
|
{
|
|
out.push_back(getName() + "_" + std::to_string(mu)
|
|
+ "_" + std::to_string(nu));
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// setup ///////////////////////////////////////////////////////////////////////
|
|
void TScalarVP::setup(void)
|
|
{
|
|
freeMomPropName_ = FREEMOMPROP(static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().mass);
|
|
GFSrcName_ = par().scalarProp + "_DinvSrc";
|
|
fftName_ = par().scalarProp + "_fft";
|
|
phaseName_.clear();
|
|
muPropQName_.clear();
|
|
vpTensorName_.clear();
|
|
momPhaseName_.clear();
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
|
|
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
|
|
|
|
std::vector<std::string> vpTensorName_mu;
|
|
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
|
{
|
|
vpTensorName_mu.push_back(getName() + "_" + std::to_string(mu)
|
|
+ "_" + std::to_string(nu));
|
|
}
|
|
vpTensorName_.push_back(vpTensorName_mu);
|
|
}
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
|
|
}
|
|
}
|
|
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
envCreateLat(ScalarField, muPropQName_[mu]);
|
|
|
|
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
|
{
|
|
envCreateLat(ScalarField, vpTensorName_[mu][nu]);
|
|
}
|
|
}
|
|
if (!par().output.empty())
|
|
{
|
|
momPhasesDone_ = env().hasCreatedObject(momPhaseName_[0]);
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
envCacheLat(ScalarField, momPhaseName_[i_p]);
|
|
}
|
|
}
|
|
envTmpLat(ScalarField, "buf");
|
|
envTmpLat(ScalarField, "result");
|
|
envTmpLat(ScalarField, "Amu");
|
|
envTmpLat(ScalarField, "Usnk");
|
|
envTmpLat(ScalarField, "tmpProp");
|
|
}
|
|
|
|
// execution ///////////////////////////////////////////////////////////////////
|
|
void TScalarVP::execute(void)
|
|
{
|
|
// CACHING ANALYTIC EXPRESSIONS
|
|
makeCaches();
|
|
|
|
Complex ci(0.0,1.0);
|
|
Real q = static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().charge;
|
|
auto &prop0 = envGet(ScalarField, prop0Name_);
|
|
auto &propQ = envGet(ScalarField, propQName_);
|
|
auto &propSun = envGet(ScalarField, propSunName_);
|
|
auto &propTad = envGet(ScalarField, propTadName_);
|
|
auto &GFSrc = envGet(ScalarField, GFSrcName_);
|
|
auto &G = envGet(ScalarField, freeMomPropName_);
|
|
auto &fft = envGet(FFT, fftName_);
|
|
phase_.clear();
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
auto &phmu = envGet(ScalarField, phaseName_[mu]);
|
|
phase_.push_back(&phmu);
|
|
}
|
|
|
|
// PROPAGATORS FROM SHIFTED SOURCES
|
|
LOG(Message) << "Computing O(q) charged scalar propagators..."
|
|
<< std::endl;
|
|
std::vector<ScalarField *> muPropQ;
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
auto &propmu = envGet(ScalarField, muPropQName_[mu]);
|
|
|
|
// -G*momD1*G*F*tau_mu*Src (momD1 = F*D1*Finv)
|
|
propmu = adj(*phase_[mu])*GFSrc;
|
|
momD1(propmu, fft);
|
|
propmu = -G*propmu;
|
|
fft.FFT_all_dim(propmu, propmu, FFT::backward);
|
|
|
|
muPropQ.push_back(&propmu);
|
|
}
|
|
|
|
// CONTRACTIONS
|
|
auto &A = envGet(EmField, par().emField);
|
|
envGetTmp(ScalarField, buf);
|
|
envGetTmp(ScalarField, result);
|
|
envGetTmp(ScalarField, Amu);
|
|
envGetTmp(ScalarField, Usnk);
|
|
envGetTmp(ScalarField, tmpProp);
|
|
TComplex Anu0, Usrc;
|
|
std::vector<int> coor0 = {0, 0, 0, 0};
|
|
std::vector<std::vector<ScalarField *> > vpTensor;
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
std::vector<ScalarField *> vpTensor_mu;
|
|
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
|
{
|
|
auto &vpmunu = envGet(ScalarField, vpTensorName_[mu][nu]);
|
|
vpTensor_mu.push_back(&vpmunu);
|
|
}
|
|
vpTensor.push_back(vpTensor_mu);
|
|
}
|
|
|
|
// Prepare output data structure if necessary
|
|
Result outputData;
|
|
if (!par().output.empty())
|
|
{
|
|
outputData.projection.resize(par().outputMom.size());
|
|
outputData.lattice_size = env().getGrid()->FullDimensions().toVector();
|
|
outputData.mass = static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().mass;
|
|
outputData.charge = q;
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
outputData.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
|
|
outputData.projection[i_p].pi.resize(env().getNd());
|
|
outputData.projection[i_p].pi_free.resize(env().getNd());
|
|
outputData.projection[i_p].pi_2E.resize(env().getNd());
|
|
outputData.projection[i_p].pi_2T.resize(env().getNd());
|
|
outputData.projection[i_p].pi_S.resize(env().getNd());
|
|
outputData.projection[i_p].pi_4C.resize(env().getNd());
|
|
outputData.projection[i_p].pi_X.resize(env().getNd());
|
|
outputData.projection[i_p].pi_srcT.resize(env().getNd());
|
|
outputData.projection[i_p].pi_snkT.resize(env().getNd());
|
|
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
|
{
|
|
outputData.projection[i_p].pi[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_free[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_2E[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_2T[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_S[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_4C[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_X[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_srcT[nu].resize(env().getNd());
|
|
outputData.projection[i_p].pi_snkT[nu].resize(env().getNd());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do contractions
|
|
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
|
|
{
|
|
peekSite(Anu0, peekLorentz(A, nu), coor0);
|
|
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
|
|
<< std::endl;
|
|
Amu = peekLorentz(A, mu);
|
|
|
|
// free
|
|
tmpProp = Cshift(prop0, nu, -1); // S_0(0|x-a\hat{\nu})
|
|
// = S_0(a\hat{\nu}|x)
|
|
Usrc = Complex(1.0,0.0);
|
|
vpContraction(result, prop0, tmpProp, Usrc, mu);
|
|
*vpTensor[mu][nu] = result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_free[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
tmpProp = result; // Just using tmpProp as a temporary ScalarField
|
|
// here (buf is modified by calls to writeVP())
|
|
|
|
// srcT
|
|
result = tmpProp * (-0.5)*Anu0*Anu0;
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_srcT[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// snkT
|
|
result = tmpProp * (-0.5)*Amu*Amu;
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_snkT[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// S
|
|
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
|
|
Usrc = ci*Anu0;
|
|
Usnk = ci*Amu;
|
|
vpContraction(result, prop0, tmpProp, Usrc, Usnk, mu);
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_S[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// 4C
|
|
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
|
|
Usrc = Complex(1.0,0.0);
|
|
Usnk = ci*Amu;
|
|
vpContraction(result, propQ, tmpProp, Usrc, Usnk, mu);
|
|
Usrc = ci*Anu0;
|
|
vpContraction(buf, propQ, tmpProp, Usrc, mu);
|
|
result += buf;
|
|
vpContraction(buf, prop0, *muPropQ[nu], Usrc, mu);
|
|
result += buf;
|
|
Usrc = Complex(1.0,0.0);
|
|
Usnk = ci*Amu;
|
|
vpContraction(buf, prop0, *muPropQ[nu], Usrc, Usnk, mu);
|
|
result += buf;
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_4C[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// X
|
|
Usrc = Complex(1.0,0.0);
|
|
vpContraction(result, propQ, *muPropQ[nu], Usrc, mu);
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_X[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// 2E
|
|
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
|
|
Usrc = Complex(1.0,0.0);
|
|
vpContraction(result, propSun, tmpProp, Usrc, mu);
|
|
tmpProp = Cshift(propSun, nu, -1); // S_\Sigma(0|x-a\hat{\nu})
|
|
//(Note: <S(0|x-a\hat{\nu})> = <S(a\hat{\nu}|x)>)
|
|
vpContraction(buf, prop0, tmpProp, Usrc, mu);
|
|
result += buf;
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_2E[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// 2T
|
|
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
|
|
Usrc = Complex(1.0,0.0);
|
|
vpContraction(result, propTad, tmpProp, Usrc, mu);
|
|
tmpProp = Cshift(propTad, nu, -1); // S_T(0|x-a\hat{\nu})
|
|
vpContraction(buf, prop0, tmpProp, Usrc, mu);
|
|
result += buf;
|
|
*vpTensor[mu][nu] += q*q*result;
|
|
// Do momentum projections if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi_2T[mu][nu], result,
|
|
i_p);
|
|
}
|
|
}
|
|
|
|
// Do momentum projections of full VP if necessary
|
|
if (!par().output.empty())
|
|
{
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
project(outputData.projection[i_p].pi[mu][nu],
|
|
*vpTensor[mu][nu], i_p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// OUTPUT IF NECESSARY
|
|
if (!par().output.empty())
|
|
{
|
|
LOG(Message) << "Saving momentum-projected HVP to '"
|
|
<< RESULT_FILE_NAME(par().output, vm().getTrajectory()) << "'..."
|
|
<< std::endl;
|
|
saveResult(par().output, "HVP", outputData);
|
|
}
|
|
}
|
|
|
|
void TScalarVP::makeCaches(void)
|
|
{
|
|
envGetTmp(ScalarField, buf);
|
|
|
|
if ( (!par().output.empty()) && (!momPhasesDone_) )
|
|
{
|
|
LOG(Message) << "Caching phases for momentum projections..."
|
|
<< std::endl;
|
|
auto l = env().getGrid()->FullDimensions();
|
|
Complex ci(0.0,1.0);
|
|
|
|
// Calculate phase factors
|
|
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
|
|
{
|
|
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
|
|
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
|
|
momph_ip = Zero();
|
|
for (unsigned int j = 0; j < env().getNd()-1; ++j)
|
|
{
|
|
Real twoPiL = M_PI*2./l[j];
|
|
LatticeCoordinate(buf, j);
|
|
buf = mom[j]*twoPiL*buf;
|
|
momph_ip = momph_ip + buf;
|
|
}
|
|
momph_ip = exp(-ci*momph_ip);
|
|
momPhase_.push_back(&momph_ip);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TScalarVP::vpContraction(ScalarField &vp,
|
|
ScalarField &prop_0_x, ScalarField &prop_nu_x,
|
|
TComplex u_src, ScalarField &u_snk, int mu)
|
|
{
|
|
// Note: this function assumes a point source is used.
|
|
vp = adj(prop_nu_x) * u_snk * Cshift(prop_0_x, mu, 1) * u_src;
|
|
vp -= Cshift(adj(prop_nu_x), mu, 1) * adj(u_snk) * prop_0_x * u_src;
|
|
vp = 2.0*real(vp);
|
|
}
|
|
|
|
void TScalarVP::vpContraction(ScalarField &vp,
|
|
ScalarField &prop_0_x, ScalarField &prop_nu_x,
|
|
TComplex u_src, int mu)
|
|
{
|
|
// Note: this function assumes a point source is used.
|
|
vp = adj(prop_nu_x) * Cshift(prop_0_x, mu, 1) * u_src;
|
|
vp -= Cshift(adj(prop_nu_x), mu, 1) * prop_0_x * u_src;
|
|
vp = 2.0*real(vp);
|
|
}
|
|
|
|
void TScalarVP::project(std::vector<Complex> &projection, const ScalarField &vp, int i_p)
|
|
{
|
|
std::vector<TComplex> vecBuf;
|
|
envGetTmp(ScalarField, buf);
|
|
|
|
buf = vp*(*momPhase_[i_p]);
|
|
sliceSum(buf, vecBuf, Tp);
|
|
projection.resize(vecBuf.size());
|
|
for (unsigned int t = 0; t < vecBuf.size(); ++t)
|
|
{
|
|
projection[t] = TensorRemove(vecBuf[t]);
|
|
}
|
|
}
|
|
|
|
void TScalarVP::momD1(ScalarField &s, FFT &fft)
|
|
{
|
|
auto &A = envGet(EmField, par().emField);
|
|
Complex ci(0.0,1.0);
|
|
|
|
envGetTmp(ScalarField, buf);
|
|
envGetTmp(ScalarField, result);
|
|
envGetTmp(ScalarField, Amu);
|
|
|
|
result = Zero();
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
Amu = peekLorentz(A, mu);
|
|
buf = (*phase_[mu])*s;
|
|
fft.FFT_all_dim(buf, buf, FFT::backward);
|
|
buf = Amu*buf;
|
|
fft.FFT_all_dim(buf, buf, FFT::forward);
|
|
result = result - ci*buf;
|
|
}
|
|
fft.FFT_all_dim(s, s, FFT::backward);
|
|
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
|
|
{
|
|
Amu = peekLorentz(A, mu);
|
|
buf = Amu*s;
|
|
fft.FFT_all_dim(buf, buf, FFT::forward);
|
|
result = result + ci*adj(*phase_[mu])*buf;
|
|
}
|
|
|
|
s = result;
|
|
}
|