mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 09:45:36 +00:00
293 lines
9.0 KiB
C++
293 lines
9.0 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Hadrons/Modules/MFermion/EMLepton.hpp
|
|
|
|
Copyright (C) 2015-2019
|
|
|
|
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
|
|
#ifndef Hadrons_MFermion_EMLepton_hpp_
|
|
#define Hadrons_MFermion_EMLepton_hpp_
|
|
|
|
#include <Hadrons/Global.hpp>
|
|
#include <Hadrons/Module.hpp>
|
|
#include <Hadrons/ModuleFactory.hpp>
|
|
|
|
BEGIN_HADRONS_NAMESPACE
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* Calculates a free lepton propagator with a sequential insertion of
|
|
* i*\gamma_mu A_mu with a photon field A_mu
|
|
*
|
|
* L(x) = \sum_y S(x,y) i*\gamma_mu*A_mu S(y,xl) \delta_{(tl-x0),dt}
|
|
*
|
|
* with a wall source for the lepton at tl
|
|
*
|
|
* In addition outputs the propagator without photon vertex
|
|
*
|
|
* L^{free}(x) = S(x,xl) \delta_{(tl-x0),dt}
|
|
*
|
|
*
|
|
* options:
|
|
* - action: fermion action used for propagator (string)
|
|
* - emField: photon field A_mu (string)
|
|
* - mass: input mass for the lepton propagator
|
|
* - twist: twisted boundary for lepton propagator, e.g. "0.0 0.0 0.0 0.5"
|
|
* - deltat: source-sink separation
|
|
*
|
|
*******************************************************************************/
|
|
|
|
|
|
/******************************************************************************
|
|
* EMLepton *
|
|
******************************************************************************/
|
|
BEGIN_MODULE_NAMESPACE(MFermion)
|
|
|
|
class EMLeptonPar: Serializable
|
|
{
|
|
public:
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(EMLeptonPar,
|
|
std::string, action,
|
|
std::string, emField,
|
|
double, mass,
|
|
std::string , boundary,
|
|
std::string, twist,
|
|
unsigned int, deltat);
|
|
};
|
|
|
|
template <typename FImpl>
|
|
class TEMLepton: public Module<EMLeptonPar>
|
|
{
|
|
public:
|
|
FERM_TYPE_ALIASES(FImpl,);
|
|
public:
|
|
typedef PhotonR::GaugeField EmField;
|
|
public:
|
|
// constructor
|
|
TEMLepton(const std::string name);
|
|
// destructor
|
|
virtual ~TEMLepton(void) {};
|
|
// dependency relation
|
|
virtual std::vector<std::string> getInput(void);
|
|
virtual std::vector<std::string> getOutput(void);
|
|
protected:
|
|
// setup
|
|
virtual void setup(void);
|
|
// execution
|
|
virtual void execute(void);
|
|
private:
|
|
unsigned int Ls_;
|
|
};
|
|
|
|
MODULE_REGISTER_TMP(EMLepton, TEMLepton<FIMPL>, MFermion);
|
|
|
|
/******************************************************************************
|
|
* TEMLepton implementation *
|
|
******************************************************************************/
|
|
// constructor /////////////////////////////////////////////////////////////////
|
|
template <typename FImpl>
|
|
TEMLepton<FImpl>::TEMLepton(const std::string name)
|
|
: Module<EMLeptonPar>(name)
|
|
{}
|
|
|
|
// dependencies/products ///////////////////////////////////////////////////////
|
|
template <typename FImpl>
|
|
std::vector<std::string> TEMLepton<FImpl>::getInput(void)
|
|
{
|
|
std::vector<std::string> in = {par().action, par().emField};
|
|
|
|
return in;
|
|
}
|
|
|
|
template <typename FImpl>
|
|
std::vector<std::string> TEMLepton<FImpl>::getOutput(void)
|
|
{
|
|
std::vector<std::string> out = {getName(), getName() + "_free"};
|
|
|
|
return out;
|
|
}
|
|
|
|
// setup ///////////////////////////////////////////////////////////////////////
|
|
template <typename FImpl>
|
|
void TEMLepton<FImpl>::setup(void)
|
|
{
|
|
Ls_ = env().getObjectLs(par().action);
|
|
envCreateLat(PropagatorField, getName());
|
|
envCreateLat(PropagatorField, getName() + "_free");
|
|
envTmpLat(FermionField, "source", Ls_);
|
|
envTmpLat(FermionField, "sol", Ls_);
|
|
envTmpLat(FermionField, "tmp");
|
|
envTmpLat(PropagatorField, "sourcetmp");
|
|
envTmpLat(PropagatorField, "proptmp");
|
|
envTmpLat(PropagatorField, "freetmp");
|
|
envTmp(Lattice<iScalar<vInteger>>, "tlat",1, envGetGrid(LatticeComplex));
|
|
|
|
}
|
|
|
|
// execution ///////////////////////////////////////////////////////////////////
|
|
template <typename FImpl>
|
|
void TEMLepton<FImpl>::execute(void)
|
|
{
|
|
LOG(Message) << "Computing free fermion propagator '" << getName() << "'"
|
|
<< std::endl;
|
|
|
|
auto &mat = envGet(FMat, par().action);
|
|
RealD mass = par().mass;
|
|
Complex ci(0.0,1.0);
|
|
|
|
PropagatorField &Aslashlep = envGet(PropagatorField, getName());
|
|
PropagatorField &lep = envGet(PropagatorField, getName() + "_free");
|
|
|
|
envGetTmp(FermionField, source);
|
|
envGetTmp(FermionField, sol);
|
|
envGetTmp(FermionField, tmp);
|
|
LOG(Message) << "Calculating a lepton Propagator with sequential Aslash insertion with lepton mass "
|
|
<< mass << " using the action '" << par().action
|
|
<< "' for fixed source-sink separation of " << par().deltat << std::endl;
|
|
|
|
envGetTmp(Lattice<iScalar<vInteger>>, tlat);
|
|
LatticeCoordinate(tlat, Tp);
|
|
|
|
|
|
std::vector<double> twist = strToVec<double>(par().twist);
|
|
if(twist.size() != Nd)
|
|
{
|
|
HADRONS_ERROR(Size, "number of twist angles does not match number of dimensions");
|
|
}
|
|
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
|
|
if(boundary.size() != Nd)
|
|
{
|
|
HADRONS_ERROR(Size, "number of boundary conditions does not match number of dimensions");
|
|
}
|
|
|
|
auto &stoch_photon = envGet(EmField, par().emField);
|
|
unsigned int nt = env().getDim(Tp);
|
|
|
|
envGetTmp(PropagatorField, proptmp);
|
|
envGetTmp(PropagatorField, freetmp);
|
|
envGetTmp(PropagatorField, sourcetmp);
|
|
|
|
std::vector<int> position;
|
|
SitePropagator id;
|
|
id = 1.;
|
|
|
|
unsigned int tl=0;
|
|
|
|
//wallsource at tl
|
|
sourcetmp = 1.;
|
|
sourcetmp = where((tlat == tl), sourcetmp, 0.*sourcetmp);
|
|
|
|
//free propagator from pt source
|
|
for (unsigned int s = 0; s < Ns; ++s)
|
|
{
|
|
LOG(Message) << "Calculation for spin= " << s << std::endl;
|
|
if (Ls_ == 1)
|
|
{
|
|
PropToFerm<FImpl>(source, sourcetmp, s, 0);
|
|
}
|
|
else
|
|
{
|
|
PropToFerm<FImpl>(tmp, sourcetmp, s, 0);
|
|
// 5D source if action is 5d
|
|
mat.ImportPhysicalFermionSource(tmp, source);
|
|
}
|
|
sol = zero;
|
|
mat.FreePropagator(source,sol,mass,boundary,twist);
|
|
if (Ls_ == 1)
|
|
{
|
|
FermToProp<FImpl>(freetmp, sol, s, 0);
|
|
}
|
|
// create 4D propagators from 5D one if necessary
|
|
if (Ls_ > 1)
|
|
{
|
|
mat.ExportPhysicalFermionSolution(sol, tmp);
|
|
FermToProp<FImpl>(freetmp, tmp, s, 0);
|
|
}
|
|
}
|
|
|
|
for(tl=0;tl<nt;tl++){
|
|
|
|
//shift free propagator to different source positions
|
|
//account for possible anti-periodic boundary in time
|
|
proptmp = Cshift(freetmp,Tp, -tl);
|
|
proptmp = where( tlat < tl, boundary[Tp]*proptmp, proptmp);
|
|
|
|
// free propagator for fixed source-sink separation
|
|
lep = where(tlat == (tl-par().deltat+nt)%nt, proptmp, lep);
|
|
|
|
// i*A_mu*gamma_mu
|
|
sourcetmp = zero;
|
|
for(unsigned int mu=0;mu<=3;mu++)
|
|
{
|
|
Gamma gmu(Gamma::gmu[mu]);
|
|
sourcetmp += ci * PeekIndex<LorentzIndex>(stoch_photon, mu) * (gmu * proptmp );
|
|
}
|
|
|
|
proptmp = zero;
|
|
|
|
//sequential propagator from i*Aslash*S
|
|
LOG(Message) << "Sequential propagator for t= " << tl << std::endl;
|
|
for (unsigned int s = 0; s < Ns; ++s)
|
|
{
|
|
LOG(Message) << "Calculation for spin= " << s << std::endl;
|
|
if (Ls_ == 1)
|
|
{
|
|
PropToFerm<FImpl>(source, sourcetmp, s, 0);
|
|
}
|
|
else
|
|
{
|
|
PropToFerm<FImpl>(tmp, sourcetmp, s, 0);
|
|
// 5D source if action is 5d
|
|
mat.ImportPhysicalFermionSource(tmp, source);
|
|
}
|
|
sol = zero;
|
|
mat.FreePropagator(source,sol,mass,boundary,twist);
|
|
if (Ls_ == 1)
|
|
{
|
|
FermToProp<FImpl>(proptmp, sol, s, 0);
|
|
}
|
|
// create 4D propagators from 5D one if necessary
|
|
if (Ls_ > 1)
|
|
{
|
|
mat.ExportPhysicalFermionSolution(sol, tmp);
|
|
FermToProp<FImpl>(proptmp, tmp, s, 0);
|
|
}
|
|
}
|
|
// keep the result for the desired delta t
|
|
Aslashlep = where(tlat == (tl-par().deltat+nt)%nt, proptmp, Aslashlep);
|
|
}
|
|
|
|
//account for possible anti-periodic boundary in time
|
|
Aslashlep = where( tlat >= nt-par().deltat, boundary[Tp]*Aslashlep, Aslashlep);
|
|
lep = where( tlat >= nt-par().deltat, boundary[Tp]*lep, lep);
|
|
|
|
}
|
|
|
|
END_MODULE_NAMESPACE
|
|
|
|
END_HADRONS_NAMESPACE
|
|
|
|
#endif // Hadrons_MFermion_EMLepton_hpp_
|