1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 09:45:36 +00:00
Grid/lib/algorithms/approx/Chebyshev.h
Peter Boyle 1d67d29183 Jackson smoothed chebyshev and (untested) completion of force terms
for Cayley, Partial and Cont fraction dwf and overlap.
have even odd and unprec forces.
2015-08-01 05:58:35 +09:00

184 lines
4.3 KiB
C++

#ifndef GRID_CHEBYSHEV_H
#define GRID_CHEBYSHEV_H
#include<Grid.h>
#include<algorithms/LinearOperator.h>
namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////////
// Simple general polynomial with user supplied coefficients
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class Polynomial : public OperatorFunction<Field> {
private:
std::vector<double> Coeffs;
public:
Polynomial(std::vector<double> &_Coeffs) : Coeffs(_Coeffs) {};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Field AtoN = in;
out = AtoN*Coeffs[0];
for(int n=1;n<Coeffs.size();n++){
Field Mtmp=AtoN;
Linop.Op(Mtmp,AtoN);
out=out+AtoN*Coeffs[n];
}
};
};
////////////////////////////////////////////////////////////////////////////////////////////
// Generic Chebyshev approximations
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class Chebyshev : public OperatorFunction<Field> {
private:
std::vector<double> Coeffs;
int order;
double hi;
double lo;
public:
void csv(std::ostream &out){
for (double x=lo; x<hi; x+=(hi-lo)/1000) {
double f = approx(x);
out<< x<<" "<<f<<std::endl;
}
return;
}
// Convenience for plotting the approximation
void PlotApprox(std::ostream &out) {
out<<"Polynomial approx ["<<lo<<","<<hi<<"]"<<std::endl;
for(double x=lo;x<hi;x+=(hi-lo)/50.0){
out <<x<<"\t"<<approx(x)<<std::endl;
}
};
// c.f. numerical recipes "chebft"/"chebev". This is sec 5.8 "Chebyshev approximation".
//
Chebyshev(double _lo,double _hi,int _order, double (* func)(double) ){
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
double s=0;
for(int k=0;k<order;k++){
double y=std::cos(M_PI*(k+0.5)/order);
double x=0.5*(y*(hi-lo)+(hi+lo));
double f=func(x);
s=s+f*std::cos( j*M_PI*(k+0.5)/order );
}
Coeffs[j] = s * 2.0/order;
}
};
void JacksonSmooth(void){
double M=order;
double alpha = M_PI/(M+2);
double lmax = std::cos(alpha);
double sumUsq =0;
std::vector<double> U(M);
std::vector<double> a(M);
std::vector<double> g(M);
for(int n=0;n<=M;n++){
U[n] = std::sin((n+1)*std::acos(lmax))/std::sin(std::acos(lmax));
sumUsq += U[n]*U[n];
}
sumUsq = std::sqrt(sumUsq);
for(int i=1;i<=M;i++){
a[i] = U[i]/sumUsq;
}
g[0] = 1.0;
for(int m=1;m<=M;m++){
g[m] = 0;
for(int i=0;i<=M-m;i++){
g[m]+= a[i]*a[m+i];
}
}
for(int m=1;m<=M;m++){
Coeffs[m]*=g[m];
}
}
double approx(double x) // Convenience for plotting the approximation
{
double Tn;
double Tnm;
double Tnp;
double y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
double T0=1;
double T1=y;
double sum;
sum = 0.5*Coeffs[0]*T0;
sum+= Coeffs[1]*T1;
Tn =T1;
Tnm=T0;
for(int i=2;i<order;i++){
Tnp=2*y*Tn-Tnm;
Tnm=Tn;
Tn =Tnp;
sum+= Tn*Coeffs[i];
}
return sum;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in._grid;
int vol=grid->gSites();
Field T0(grid); T0 = in;
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
std::cout<<GridLogMessage << "Chebyshev ["<<lo<<","<<hi<<"]"<< " order "<<order <<std::endl;
// Tn=T1 = (xscale M + mscale)in
double xscale = 2.0/(hi-lo);
double mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
T1=y*xscale+in*mscale;
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y);
y=xscale*y+mscale*(*Tn);
*Tnp=2.0*y-(*Tnm);
out=out+Coeffs[n]* (*Tnp);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
};
}
#endif