mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-09 21:50:45 +01:00
358 lines
14 KiB
C++
358 lines
14 KiB
C++
#pragma once
|
|
//#include <Grid/Hadrons/Global.hpp>
|
|
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
|
|
|
namespace Grid {
|
|
namespace QCD {
|
|
|
|
#undef DELTA_F_EQ_2
|
|
|
|
template <typename FImpl>
|
|
class BaryonUtils
|
|
{
|
|
public:
|
|
typedef typename FImpl::ComplexField ComplexField;
|
|
typedef typename FImpl::FermionField FermionField;
|
|
typedef typename FImpl::PropagatorField PropagatorField;
|
|
|
|
typedef typename FImpl::SitePropagator pobj;
|
|
typedef typename FImpl::SiteSpinor vobj;
|
|
typedef typename vobj::scalar_object sobj;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
|
|
static void ContractBaryons_debug(const PropagatorField &q1,
|
|
const PropagatorField &q2,
|
|
const PropagatorField &q3,
|
|
const Gamma GammaA,
|
|
const Gamma GammaB,
|
|
ComplexField &bc1,
|
|
ComplexField &bc2,
|
|
ComplexField &bc3,
|
|
ComplexField &bc4,
|
|
ComplexField &bc5,
|
|
ComplexField &bc6,
|
|
ComplexField &baryon_corr);
|
|
static void ContractBaryons(const PropagatorField &q1,
|
|
const PropagatorField &q2,
|
|
const PropagatorField &q3,
|
|
const Gamma GammaA,
|
|
const Gamma GammaB,
|
|
ComplexField &baryon_corr);
|
|
|
|
static LatticeSpinColourMatrix quarkContract13(const PropagatorField &q1,
|
|
const PropagatorField &q2);
|
|
};
|
|
|
|
|
|
template<class FImpl>
|
|
void BaryonUtils<FImpl>::ContractBaryons_debug(const PropagatorField &q1,
|
|
const PropagatorField &q2,
|
|
const PropagatorField &q3,
|
|
const Gamma GammaA,
|
|
const Gamma GammaB,
|
|
ComplexField &bc1,
|
|
ComplexField &bc2,
|
|
ComplexField &bc3,
|
|
ComplexField &bc4,
|
|
ComplexField &bc5,
|
|
ComplexField &bc6,
|
|
ComplexField &baryon_corr)
|
|
{
|
|
GridBase *grid = q1._grid;
|
|
|
|
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
|
|
//Gamma GammaA(Gamma::Algebra::Identity); //Still hardcoded 1
|
|
//Gamma GammaB(Gamma::Algebra::SigmaXZ); //Still hardcoded Cg5
|
|
//Gamma GammaB(Gamma::Algebra::GammaZGamma5); //Still hardcoded CgX = i gamma_3 gamma_5
|
|
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
|
|
|
|
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
|
|
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
|
|
char left[] = "sss";
|
|
char right[] = "sss";
|
|
std::vector<int> wick_contraction = {0,0,0,0,0,0};
|
|
|
|
for (int ie=0; ie < 6 ; ie++)
|
|
if (left[0] == right[epsilon[ie][0]] && left[1] == right[epsilon[ie][1]] && left[2] == right[epsilon[ie][2]])
|
|
wick_contraction[ie]=1;
|
|
|
|
|
|
int parity = 1;
|
|
|
|
|
|
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
|
|
|
typedef typename ComplexField::vector_object vobj;
|
|
|
|
auto D1 = q1._odata[ss];
|
|
auto D2 = q2._odata[ss];
|
|
auto D3 = q3._odata[ss];
|
|
|
|
auto gD1a = GammaA * GammaA * D1;
|
|
auto gD1b = GammaA * g4 * GammaA * D1;
|
|
auto pD1 = 0.5* (gD1a + (double)parity * gD1b);
|
|
auto gD3 = GammaB * D3;
|
|
|
|
vobj result=zero;
|
|
vobj result1=zero;
|
|
vobj result2=zero;
|
|
vobj result3=zero;
|
|
vobj result4=zero;
|
|
vobj result5=zero;
|
|
vobj result6=zero;
|
|
|
|
for (int ie_src=0; ie_src < 6 ; ie_src++){
|
|
int a_src = epsilon[ie_src][0]; //a
|
|
int b_src = epsilon[ie_src][1]; //b
|
|
int c_src = epsilon[ie_src][2]; //c
|
|
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
|
|
int a_snk = epsilon[ie_snk][0]; //a'
|
|
int b_snk = epsilon[ie_snk][1]; //b'
|
|
int c_snk = epsilon[ie_snk][2]; //c'
|
|
//This is the \delta_{123}^{123} part
|
|
if (wick_contraction[0]){
|
|
auto D2g = D2 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,gamma_src)(c_snk,c_src)*D2g()(alpha_snk,beta_src)(a_snk,a_src)*gD3()(alpha_snk,beta_src)(b_snk,b_src);
|
|
result1()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,gamma_src)(c_snk,c_src)*D2g()(alpha_snk,beta_src)(a_snk,a_src)*gD3()(alpha_snk,beta_src)(b_snk,b_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{231} part
|
|
if (wick_contraction[1]){
|
|
auto pD1g = pD1 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1g()(gamma_src,beta_src)(c_snk,a_src)*D2()(alpha_snk,beta_src)(a_snk,b_src)*gD3()(alpha_snk,gamma_src)(b_snk,c_src);
|
|
result2()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1g()(gamma_src,beta_src)(c_snk,a_src)*D2()(alpha_snk,beta_src)(a_snk,b_src)*gD3()(alpha_snk,gamma_src)(b_snk,c_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{312} part
|
|
if (wick_contraction[2]){
|
|
auto gD3g = gD3 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,beta_src)(c_snk,b_src)*D2()(alpha_snk,gamma_src)(a_snk,c_src)*gD3g()(alpha_snk,beta_src)(b_snk,a_src);
|
|
result3()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,beta_src)(c_snk,b_src)*D2()(alpha_snk,gamma_src)(a_snk,c_src)*gD3g()(alpha_snk,beta_src)(b_snk,a_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{132} part
|
|
if (wick_contraction[3]){
|
|
auto gD3g = gD3 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,gamma_src)(c_snk,c_src)*D2()(alpha_snk,beta_src)(a_snk,b_src)*gD3g()(alpha_snk,beta_src)(b_snk,a_src);
|
|
result4()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,gamma_src)(c_snk,c_src)*D2()(alpha_snk,beta_src)(a_snk,b_src)*gD3g()(alpha_snk,beta_src)(b_snk,a_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{321} part
|
|
if (wick_contraction[4]){
|
|
auto D2g = D2 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,beta_src)(c_snk,b_src)*D2g()(alpha_snk,beta_src)(a_snk,a_src)*gD3()(alpha_snk,gamma_src)(b_snk,c_src);
|
|
result5()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,beta_src)(c_snk,b_src)*D2g()(alpha_snk,beta_src)(a_snk,a_src)*gD3()(alpha_snk,gamma_src)(b_snk,c_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{213} part
|
|
if (wick_contraction[5]){
|
|
auto pD1g = pD1 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1g()(gamma_src,beta_src)(c_snk,a_src)*D2()(alpha_snk,gamma_src)(a_snk,c_src)*gD3()(alpha_snk,beta_src)(b_snk,b_src);
|
|
result6()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1g()(gamma_src,beta_src)(c_snk,a_src)*D2()(alpha_snk,gamma_src)(a_snk,c_src)*gD3()(alpha_snk,beta_src)(b_snk,b_src);
|
|
}}}
|
|
}
|
|
|
|
/*if (ie_src==0 && ie_snk==0){
|
|
baryon_corr._odata[ss] = result;
|
|
} else {
|
|
baryon_corr._odata[ss] += result;
|
|
}*/
|
|
|
|
}
|
|
}
|
|
baryon_corr._odata[ss] = result;
|
|
|
|
bc1._odata[ss] = result1;
|
|
bc2._odata[ss] = result2;
|
|
bc3._odata[ss] = result3;
|
|
bc4._odata[ss] = result4;
|
|
bc5._odata[ss] = result5;
|
|
bc6._odata[ss] = result6;
|
|
} //end loop over lattice sites
|
|
|
|
}
|
|
|
|
template<class FImpl>
|
|
void BaryonUtils<FImpl>::ContractBaryons(const PropagatorField &q1,
|
|
const PropagatorField &q2,
|
|
const PropagatorField &q3,
|
|
const Gamma GammaA,
|
|
const Gamma GammaB,
|
|
ComplexField &baryon_corr)
|
|
{
|
|
GridBase *grid = q1._grid;
|
|
|
|
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
|
|
//Gamma GammaA(Gamma::Algebra::Identity); //Still hardcoded 1
|
|
//Gamma GammaB(Gamma::Algebra::SigmaXZ); //Still hardcoded Cg5
|
|
//Gamma GammaB(Gamma::Algebra::GammaZGamma5); //Still hardcoded CgX = i gamma_3 gamma_5
|
|
Gamma g4(Gamma::Algebra::GammaT); //needed for parity P_\pm = 0.5*(1 \pm \gamma_4)
|
|
|
|
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
|
|
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
|
|
char left[] = "sss";
|
|
char right[] = "sss";
|
|
std::vector<int> wick_contraction = {0,0,0,0,0,0};
|
|
|
|
for (int ie=0; ie < 6 ; ie++)
|
|
if (left[0] == right[epsilon[ie][0]] && left[1] == right[epsilon[ie][1]] && left[2] == right[epsilon[ie][2]])
|
|
wick_contraction[ie]=1;
|
|
|
|
|
|
int parity = 1;
|
|
|
|
|
|
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
|
|
|
typedef typename ComplexField::vector_object vobj;
|
|
|
|
auto D1 = q1._odata[ss];
|
|
auto D2 = q2._odata[ss];
|
|
auto D3 = q3._odata[ss];
|
|
|
|
auto gD1a = GammaA * GammaA * D1;
|
|
auto gD1b = GammaA * g4 * GammaA * D1;
|
|
auto pD1 = 0.5* (gD1a + (double)parity * gD1b);
|
|
auto gD3 = GammaB * D3;
|
|
|
|
vobj result=zero;
|
|
|
|
for (int ie_src=0; ie_src < 6 ; ie_src++){
|
|
int a_src = epsilon[ie_src][0]; //a
|
|
int b_src = epsilon[ie_src][1]; //b
|
|
int c_src = epsilon[ie_src][2]; //c
|
|
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
|
|
int a_snk = epsilon[ie_snk][0]; //a'
|
|
int b_snk = epsilon[ie_snk][1]; //b'
|
|
int c_snk = epsilon[ie_snk][2]; //c'
|
|
//This is the \delta_{123}^{123} part
|
|
if (wick_contraction[0]){
|
|
auto D2g = D2 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,gamma_src)(c_snk,c_src)*D2g()(alpha_snk,beta_src)(a_snk,a_src)*gD3()(alpha_snk,beta_src)(b_snk,b_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{231} part
|
|
if (wick_contraction[1]){
|
|
auto pD1g = pD1 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1g()(gamma_src,beta_src)(c_snk,a_src)*D2()(alpha_snk,beta_src)(a_snk,b_src)*gD3()(alpha_snk,gamma_src)(b_snk,c_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{312} part
|
|
if (wick_contraction[2]){
|
|
auto gD3g = gD3 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,beta_src)(c_snk,b_src)*D2()(alpha_snk,gamma_src)(a_snk,c_src)*gD3g()(alpha_snk,beta_src)(b_snk,a_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{132} part
|
|
if (wick_contraction[3]){
|
|
auto gD3g = gD3 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,gamma_src)(c_snk,c_src)*D2()(alpha_snk,beta_src)(a_snk,b_src)*gD3()(alpha_snk,beta_src)(b_snk,a_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{321} part
|
|
if (wick_contraction[4]){
|
|
auto D2g = D2 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1()(gamma_src,beta_src)(c_snk,b_src)*D2g()(alpha_snk,beta_src)(a_snk,a_src)*gD3()(alpha_snk,gamma_src)(b_snk,c_src);
|
|
}}}
|
|
}
|
|
//This is the \delta_{123}^{213} part
|
|
if (wick_contraction[5]){
|
|
auto pD1g = pD1 * GammaB;
|
|
for (int alpha_snk=0; alpha_snk<Ns; alpha_snk++){
|
|
for (int beta_src=0; beta_src<Ns; beta_src++){
|
|
for (int gamma_src=0; gamma_src<Ns; gamma_src++){
|
|
result()()() -= epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * pD1g()(gamma_src,beta_src)(c_snk,a_src)*D2()(alpha_snk,gamma_src)(a_snk,c_src)*gD3()(alpha_snk,beta_src)(b_snk,b_src);
|
|
}}}
|
|
}
|
|
|
|
/*if (ie_src==0 && ie_snk==0){
|
|
baryon_corr._odata[ss] = result;
|
|
} else {
|
|
baryon_corr._odata[ss] += result;
|
|
}*/
|
|
|
|
}
|
|
}
|
|
baryon_corr._odata[ss] = result;
|
|
|
|
} //end loop over lattice sites
|
|
}
|
|
|
|
//QDP / CHROMA - style diquark construction
|
|
// (q_out)^{c'c}_{alpha,beta} = epsilon^{abc} epsilon^{a'b'c'} (q1)^{aa'}_{rho alpha}^* (q2)^{bb'}_{rho beta}
|
|
template<class FImpl>
|
|
LatticeSpinColourMatrix BaryonUtils<FImpl>::quarkContract13(const PropagatorField &q1,
|
|
const PropagatorField &q2)
|
|
{
|
|
GridBase *grid = q1._grid;
|
|
|
|
std::vector<std::vector<int>> epsilon = {{0,1,2},{1,2,0},{2,0,1},{0,2,1},{2,1,0},{1,0,2}};
|
|
std::vector<int> epsilon_sgn = {1,1,1,-1,-1,-1};
|
|
|
|
// TODO: Felix, made a few changes to fix this as there were compiler errors. Please validate!
|
|
LatticeSpinColourMatrix q_out(grid);
|
|
// q_out = zero; TODO: Don't think you need this, as you'll set each site explicitly anyway
|
|
|
|
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
|
const auto & D1 = q1._odata[ss];
|
|
const auto & D2 = q2._odata[ss];
|
|
auto & D_out = q_out._odata[ss];
|
|
D_out=zero;
|
|
for (int ie_src=0; ie_src < 6 ; ie_src++){
|
|
int a_src = epsilon[ie_src][0]; //a
|
|
int b_src = epsilon[ie_src][1]; //b
|
|
int c_src = epsilon[ie_src][2]; //c
|
|
for (int ie_snk=0; ie_snk < 6 ; ie_snk++){
|
|
int a_snk = epsilon[ie_snk][0]; //a'
|
|
int b_snk = epsilon[ie_snk][1]; //b'
|
|
int c_snk = epsilon[ie_snk][2]; //c'
|
|
for (int alpha=0; alpha<Ns; alpha++){
|
|
for (int beta=0; beta<Ns; beta++){
|
|
for (int rho=0; rho<Ns; rho++){
|
|
D_out()(alpha,beta)(c_snk,c_src) += epsilon_sgn[ie_src] * epsilon_sgn[ie_snk] * D1()(rho,alpha)(a_src,a_snk)*D2()(rho,beta)(b_src,b_snk); //D1 conjugate??
|
|
}}}
|
|
}
|
|
}
|
|
} //end loop over lattice sites
|
|
|
|
|
|
return q_out;
|
|
}
|
|
|
|
}}
|