1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-21 01:25:48 +01:00
Grid/lib/qcd/action/fermion/WilsonKernels.cc
Guido Cossu b93e18ed50 Modified the Dirac Kernel class to compile with different number of colours
Added the general push_back functionality to accomodate for all defined representations

Compiles, not tested
2016-07-18 16:36:28 +01:00

618 lines
16 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonKernels.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid.h>
namespace Grid {
namespace QCD {
int WilsonKernelsStatic::HandOpt;
int WilsonKernelsStatic::AsmOpt;
template <class Impl>
WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
/*
template <class Impl>
typename std::enable_if<Impl::Dimension == 3>::type WilsonKernels<Impl>::DiracOptDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
int sU, int Ls, int Ns, const FermionField &in, FermionField &out) {
#ifdef AVX512
if (AsmOpt) {
WilsonKernels<Impl>::DiracOptAsmDhopSite(st, lo, U, buf, sF, sU, Ls, Ns, in,
out);
} else {
#else
{
#endif
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if (HandOpt)
WilsonKernels<Impl>::DiracOptHandDhopSite(st, lo, U, buf, sF, sU, in,
out);
else
WilsonKernels<Impl>::DiracOptGenericDhopSite(st, lo, U, buf, sF, sU,
in, out);
sF++;
}
sU++;
}
}
}
template <class Impl>
typename std::enable_if<Impl::Dimension != 3>::type WilsonKernels<Impl>::DiracOptDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
int sU, int Ls, int Ns, const FermionField &in, FermionField &out) {
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
WilsonKernels<Impl>::DiracOptGenericDhopSite(st, lo, U, buf, sF, sU, in,
out);
sF++;
}
sU++;
}
}
template<class Impl>
void WilsonKernels<Impl>::DiracOptDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,int Ls, int Ns, const FermionField &in, FermionField &out,
typename std::enable_if<Impl::Dimension == 3, int>::type = 0)
{
// No asm implementation yet.
// if ( AsmOpt ) WilsonKernels<Impl>::DiracOptAsmDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
// else
for(int site=0;site<Ns;site++) {
for(int s=0;s<Ls;s++) {
if (HandOpt) WilsonKernels<Impl>::DiracOptHandDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
}
}
template <class Impl>
void WilsonKernels<Impl>::DiracOptDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
int sU, int Ls, int Ns, const FermionField &in, FermionField &out,
typename std::enable_if<Impl::Dimension != 3, int>::type = 0) {
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(st, lo, U, buf, sF, sU,
in, out);
sF++;
}
sU++;
}
}
*/
////////////////////////////////////////////
// Generic implementation; move to different file?
////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
int sU, const FermionField &in, FermionField &out) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
///////////////////////////
// Xp
///////////////////////////
SE = st.GetEntry(ptype, Xp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st);
spReconXp(result, Uchi);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Yp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st);
accumReconYp(result, Uchi);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st);
accumReconZp(result, Uchi);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st);
accumReconTp(result, Uchi);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st);
accumReconXm(result, Uchi);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Ym, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st);
accumReconYm(result, Uchi);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st);
accumReconZm(result, Uchi);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st);
accumReconTm(result, Uchi);
vstream(out._odata[sF], result);
};
// Need controls to do interior, exterior, or both
template <class Impl>
void WilsonKernels<Impl>::DiracOptGenericDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
int sU, const FermionField &in, FermionField &out) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
///////////////////////////
// Xp
///////////////////////////
SE = st.GetEntry(ptype, Xm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st);
spReconXp(result, Uchi);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Ym, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st);
accumReconYp(result, Uchi);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st);
accumReconZp(result, Uchi);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st);
accumReconTp(result, Uchi);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st);
accumReconXm(result, Uchi);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Yp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st);
accumReconYm(result, Uchi);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st);
accumReconZm(result, Uchi);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st);
accumReconTm(result, Uchi);
vstream(out._odata[sF], result);
};
template <class Impl>
void WilsonKernels<Impl>::DiracOptDhopDir(
StencilImpl &st, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
int sU, const FermionField &in, FermionField &out, int dir, int gamma) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteSpinor result;
SiteHalfSpinor Uchi;
StencilEntry *SE;
int ptype;
SE = st.GetEntry(ptype, dir, sF);
// Xp
if (gamma == Xp) {
if (SE->_is_local && SE->_permute) {
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjXp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconXp(result, Uchi);
}
// Yp
if (gamma == Yp) {
if (SE->_is_local && SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjYp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconYp(result, Uchi);
}
// Zp
if (gamma == Zp) {
if (SE->_is_local && SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjZp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconZp(result, Uchi);
}
// Tp
if (gamma == Tp) {
if (SE->_is_local && SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjTp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconTp(result, Uchi);
}
// Xm
if (gamma == Xm) {
if (SE->_is_local && SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjXm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconXm(result, Uchi);
}
// Ym
if (gamma == Ym) {
if (SE->_is_local && SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjYm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconYm(result, Uchi);
}
// Zm
if (gamma == Zm) {
if (SE->_is_local && SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjZm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconZm(result, Uchi);
}
// Tm
if (gamma == Tm) {
if (SE->_is_local && SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjTm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconTm(result, Uchi);
}
vstream(out._odata[sF], result);
}
FermOpTemplateInstantiate(WilsonKernels);
AdjointFermOpTemplateInstantiate(WilsonKernels);
template class WilsonKernels<DomainWallRedBlack5dImplF>;
template class WilsonKernels<DomainWallRedBlack5dImplD>;
}
}