mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 03:05:55 +01:00
264 lines
9.2 KiB
C++
264 lines
9.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_DOT_H
|
|
#define EIGEN_DOT_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
|
|
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
|
|
// looking at the static assertions. Thus this is a trick to get better compile errors.
|
|
template<typename T, typename U,
|
|
// the NeedToTranspose condition here is taken straight from Assign.h
|
|
bool NeedToTranspose = T::IsVectorAtCompileTime
|
|
&& U::IsVectorAtCompileTime
|
|
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
|
|
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
|
|
// revert to || as soon as not needed anymore.
|
|
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
|
|
>
|
|
struct dot_nocheck
|
|
{
|
|
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
|
|
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
|
{
|
|
return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
|
|
}
|
|
};
|
|
|
|
template<typename T, typename U>
|
|
struct dot_nocheck<T, U, true>
|
|
{
|
|
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
|
|
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
|
{
|
|
return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
/** \returns the dot product of *this with other.
|
|
*
|
|
* \only_for_vectors
|
|
*
|
|
* \note If the scalar type is complex numbers, then this function returns the hermitian
|
|
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
|
|
* second variable.
|
|
*
|
|
* \sa squaredNorm(), norm()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
|
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
|
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
|
|
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
|
|
|
|
eigen_assert(size() == other.size());
|
|
|
|
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
|
|
}
|
|
|
|
#ifdef EIGEN2_SUPPORT
|
|
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
|
|
* (conjugating the second variable). Of course this only makes a difference in the complex case.
|
|
*
|
|
* This method is only available in EIGEN2_SUPPORT mode.
|
|
*
|
|
* \only_for_vectors
|
|
*
|
|
* \sa dot()
|
|
*/
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
typename internal::traits<Derived>::Scalar
|
|
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
|
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
|
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
|
|
|
eigen_assert(size() == other.size());
|
|
|
|
return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
|
|
}
|
|
#endif
|
|
|
|
|
|
//---------- implementation of L2 norm and related functions ----------
|
|
|
|
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
|
|
* In both cases, it consists in the sum of the square of all the matrix entries.
|
|
* For vectors, this is also equals to the dot product of \c *this with itself.
|
|
*
|
|
* \sa dot(), norm()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
|
|
{
|
|
return numext::real((*this).cwiseAbs2().sum());
|
|
}
|
|
|
|
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
|
|
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
|
|
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
|
|
*
|
|
* \sa dot(), squaredNorm()
|
|
*/
|
|
template<typename Derived>
|
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
|
{
|
|
using std::sqrt;
|
|
return sqrt(squaredNorm());
|
|
}
|
|
|
|
/** \returns an expression of the quotient of *this by its own norm.
|
|
*
|
|
* \only_for_vectors
|
|
*
|
|
* \sa norm(), normalize()
|
|
*/
|
|
template<typename Derived>
|
|
inline const typename MatrixBase<Derived>::PlainObject
|
|
MatrixBase<Derived>::normalized() const
|
|
{
|
|
typedef typename internal::nested<Derived>::type Nested;
|
|
typedef typename internal::remove_reference<Nested>::type _Nested;
|
|
_Nested n(derived());
|
|
return n / n.norm();
|
|
}
|
|
|
|
/** Normalizes the vector, i.e. divides it by its own norm.
|
|
*
|
|
* \only_for_vectors
|
|
*
|
|
* \sa norm(), normalized()
|
|
*/
|
|
template<typename Derived>
|
|
inline void MatrixBase<Derived>::normalize()
|
|
{
|
|
*this /= norm();
|
|
}
|
|
|
|
//---------- implementation of other norms ----------
|
|
|
|
namespace internal {
|
|
|
|
template<typename Derived, int p>
|
|
struct lpNorm_selector
|
|
{
|
|
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
|
|
static inline RealScalar run(const MatrixBase<Derived>& m)
|
|
{
|
|
using std::pow;
|
|
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct lpNorm_selector<Derived, 1>
|
|
{
|
|
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.cwiseAbs().sum();
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct lpNorm_selector<Derived, 2>
|
|
{
|
|
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.norm();
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct lpNorm_selector<Derived, Infinity>
|
|
{
|
|
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
|
{
|
|
return m.cwiseAbs().maxCoeff();
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
|
|
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
|
|
* norm, that is the maximum of the absolute values of the coefficients of *this.
|
|
*
|
|
* \sa norm()
|
|
*/
|
|
template<typename Derived>
|
|
template<int p>
|
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
|
MatrixBase<Derived>::lpNorm() const
|
|
{
|
|
return internal::lpNorm_selector<Derived, p>::run(*this);
|
|
}
|
|
|
|
//---------- implementation of isOrthogonal / isUnitary ----------
|
|
|
|
/** \returns true if *this is approximately orthogonal to \a other,
|
|
* within the precision given by \a prec.
|
|
*
|
|
* Example: \include MatrixBase_isOrthogonal.cpp
|
|
* Output: \verbinclude MatrixBase_isOrthogonal.out
|
|
*/
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
bool MatrixBase<Derived>::isOrthogonal
|
|
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
|
|
{
|
|
typename internal::nested<Derived,2>::type nested(derived());
|
|
typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
|
|
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
|
|
}
|
|
|
|
/** \returns true if *this is approximately an unitary matrix,
|
|
* within the precision given by \a prec. In the case where the \a Scalar
|
|
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
|
|
*
|
|
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
|
|
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
|
|
* orthonormal basis.
|
|
*
|
|
* Example: \include MatrixBase_isUnitary.cpp
|
|
* Output: \verbinclude MatrixBase_isUnitary.out
|
|
*/
|
|
template<typename Derived>
|
|
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
|
|
{
|
|
typename Derived::Nested nested(derived());
|
|
for(Index i = 0; i < cols(); ++i)
|
|
{
|
|
if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
|
|
return false;
|
|
for(Index j = 0; j < i; ++j)
|
|
if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_DOT_H
|