mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 03:05:55 +01:00
315 lines
11 KiB
C++
315 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SELFADJOINTMATRIX_H
|
|
#define EIGEN_SELFADJOINTMATRIX_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class SelfAdjointView
|
|
* \ingroup Core_Module
|
|
*
|
|
*
|
|
* \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
|
|
*
|
|
* \param MatrixType the type of the dense matrix storing the coefficients
|
|
* \param TriangularPart can be either \c #Lower or \c #Upper
|
|
*
|
|
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
|
|
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
|
|
* and most of the time this is the only way that it is used.
|
|
*
|
|
* \sa class TriangularBase, MatrixBase::selfadjointView()
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename MatrixType, unsigned int UpLo>
|
|
struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
|
|
{
|
|
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
|
|
typedef MatrixType ExpressionType;
|
|
typedef typename MatrixType::PlainObject DenseMatrixType;
|
|
enum {
|
|
Mode = UpLo | SelfAdjoint,
|
|
Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
|
|
& (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
|
|
CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
|
|
};
|
|
};
|
|
}
|
|
|
|
template <typename Lhs, int LhsMode, bool LhsIsVector,
|
|
typename Rhs, int RhsMode, bool RhsIsVector>
|
|
struct SelfadjointProductMatrix;
|
|
|
|
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
|
|
template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
|
|
: public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
|
|
{
|
|
public:
|
|
|
|
typedef TriangularBase<SelfAdjointView> Base;
|
|
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
|
|
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
|
|
|
|
/** \brief The type of coefficients in this matrix */
|
|
typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
|
|
|
|
typedef typename MatrixType::Index Index;
|
|
|
|
enum {
|
|
Mode = internal::traits<SelfAdjointView>::Mode
|
|
};
|
|
typedef typename MatrixType::PlainObject PlainObject;
|
|
|
|
inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
|
|
{}
|
|
|
|
inline Index rows() const { return m_matrix.rows(); }
|
|
inline Index cols() const { return m_matrix.cols(); }
|
|
inline Index outerStride() const { return m_matrix.outerStride(); }
|
|
inline Index innerStride() const { return m_matrix.innerStride(); }
|
|
|
|
/** \sa MatrixBase::coeff()
|
|
* \warning the coordinates must fit into the referenced triangular part
|
|
*/
|
|
inline Scalar coeff(Index row, Index col) const
|
|
{
|
|
Base::check_coordinates_internal(row, col);
|
|
return m_matrix.coeff(row, col);
|
|
}
|
|
|
|
/** \sa MatrixBase::coeffRef()
|
|
* \warning the coordinates must fit into the referenced triangular part
|
|
*/
|
|
inline Scalar& coeffRef(Index row, Index col)
|
|
{
|
|
Base::check_coordinates_internal(row, col);
|
|
return m_matrix.const_cast_derived().coeffRef(row, col);
|
|
}
|
|
|
|
/** \internal */
|
|
const MatrixTypeNestedCleaned& _expression() const { return m_matrix; }
|
|
|
|
const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
|
|
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
|
|
|
|
/** Efficient self-adjoint matrix times vector/matrix product */
|
|
template<typename OtherDerived>
|
|
SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
|
|
operator*(const MatrixBase<OtherDerived>& rhs) const
|
|
{
|
|
return SelfadjointProductMatrix
|
|
<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
|
|
(m_matrix, rhs.derived());
|
|
}
|
|
|
|
/** Efficient vector/matrix times self-adjoint matrix product */
|
|
template<typename OtherDerived> friend
|
|
SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
|
|
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
|
|
{
|
|
return SelfadjointProductMatrix
|
|
<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
|
|
(lhs.derived(),rhs.m_matrix);
|
|
}
|
|
|
|
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
|
|
* \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$
|
|
* \returns a reference to \c *this
|
|
*
|
|
* The vectors \a u and \c v \b must be column vectors, however they can be
|
|
* a adjoint expression without any overhead. Only the meaningful triangular
|
|
* part of the matrix is updated, the rest is left unchanged.
|
|
*
|
|
* \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
|
|
*/
|
|
template<typename DerivedU, typename DerivedV>
|
|
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1));
|
|
|
|
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
|
|
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
|
|
*
|
|
* \returns a reference to \c *this
|
|
*
|
|
* Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
|
|
* call this function with u.adjoint().
|
|
*
|
|
* \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
|
|
*/
|
|
template<typename DerivedU>
|
|
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
|
|
|
|
/////////// Cholesky module ///////////
|
|
|
|
const LLT<PlainObject, UpLo> llt() const;
|
|
const LDLT<PlainObject, UpLo> ldlt() const;
|
|
|
|
/////////// Eigenvalue module ///////////
|
|
|
|
/** Real part of #Scalar */
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
/** Return type of eigenvalues() */
|
|
typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
|
|
|
EigenvaluesReturnType eigenvalues() const;
|
|
RealScalar operatorNorm() const;
|
|
|
|
#ifdef EIGEN2_SUPPORT
|
|
template<typename OtherDerived>
|
|
SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
|
|
{
|
|
enum {
|
|
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
|
|
};
|
|
m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
|
|
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
|
|
return *this;
|
|
}
|
|
template<typename OtherMatrixType, unsigned int OtherMode>
|
|
SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
|
|
{
|
|
enum {
|
|
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
|
|
};
|
|
m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
|
|
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
protected:
|
|
MatrixTypeNested m_matrix;
|
|
};
|
|
|
|
|
|
// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
|
|
// internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
|
|
// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
|
|
// {
|
|
// return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
|
|
// }
|
|
|
|
// selfadjoint to dense matrix
|
|
|
|
namespace internal {
|
|
|
|
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
|
|
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
|
|
{
|
|
enum {
|
|
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
|
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
|
};
|
|
|
|
static inline void run(Derived1 &dst, const Derived2 &src)
|
|
{
|
|
triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
|
|
|
|
if(row == col)
|
|
dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
|
|
else if(row < col)
|
|
dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
|
|
}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
|
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
|
|
{
|
|
static inline void run(Derived1 &, const Derived2 &) {}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
|
|
struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
|
|
{
|
|
enum {
|
|
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
|
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
|
};
|
|
|
|
static inline void run(Derived1 &dst, const Derived2 &src)
|
|
{
|
|
triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
|
|
|
|
if(row == col)
|
|
dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
|
|
else if(row > col)
|
|
dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
|
|
}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
|
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
|
|
{
|
|
static inline void run(Derived1 &, const Derived2 &) {}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
|
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
|
|
{
|
|
typedef typename Derived1::Index Index;
|
|
static inline void run(Derived1 &dst, const Derived2 &src)
|
|
{
|
|
for(Index j = 0; j < dst.cols(); ++j)
|
|
{
|
|
for(Index i = 0; i < j; ++i)
|
|
{
|
|
dst.copyCoeff(i, j, src);
|
|
dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
|
|
}
|
|
dst.copyCoeff(j, j, src);
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
|
struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
|
|
{
|
|
static inline void run(Derived1 &dst, const Derived2 &src)
|
|
{
|
|
typedef typename Derived1::Index Index;
|
|
for(Index i = 0; i < dst.rows(); ++i)
|
|
{
|
|
for(Index j = 0; j < i; ++j)
|
|
{
|
|
dst.copyCoeff(i, j, src);
|
|
dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
|
|
}
|
|
dst.copyCoeff(i, i, src);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
/***************************************************************************
|
|
* Implementation of MatrixBase methods
|
|
***************************************************************************/
|
|
|
|
template<typename Derived>
|
|
template<unsigned int UpLo>
|
|
typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
|
|
MatrixBase<Derived>::selfadjointView() const
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<unsigned int UpLo>
|
|
typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
|
|
MatrixBase<Derived>::selfadjointView()
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SELFADJOINTMATRIX_H
|