1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00
Grid/Grid/qcd/utils/WilsonLoops.h
Christopher Kelly bb71e9a96a Added PaddedCell and GeneralisedLocalStencil header includes to standard base headers
Moved versions of the padded-cell implementations of staple and rect-staple from test code to WilsonLoops header
Added StapleAndRectStapleAll which is now called by the plaq+rectangle action class. Under the hood it uses the padded cell implementations with maximal reuse of the padded gauge links
2023-06-27 11:23:30 -04:00

1400 lines
47 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/WilsonLoops.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: James Harrison <J.Harrison@soton.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTILS_WILSON_LOOPS_H
#define QCD_UTILS_WILSON_LOOPS_H
NAMESPACE_BEGIN(Grid);
// Common wilson loop observables
template <class Gimpl> class WilsonLoops : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
//////////////////////////////////////////////////
// directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U,
const int mu, const int nu) {
// Annoyingly, must use either scope resolution to find dependent base
// class,
// or this-> ; there is no "this" in a static method. This forces explicit
// Gimpl scope
// resolution throughout the usage in this file, and rather defeats the
// purpose of deriving
// from Gimpl.
/*
plaq = Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu])));
*/
// _
//|< _|
plaq = Gimpl::CovShiftForward(U[mu],mu,
Gimpl::CovShiftForward(U[nu],nu,
Gimpl::CovShiftBackward(U[mu],mu,
Gimpl::CovShiftIdentityBackward(U[nu], nu))));
}
//////////////////////////////////////////////////
// trace of directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceDirPlaquette(ComplexField &plaq,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0].Grid());
dirPlaquette(sp, U, mu, nu);
plaq = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of plaquette
//////////////////////////////////////////////////
static void sitePlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD sumPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
sitePlaquette(Plaq, U);
auto Tp = sum(Plaq);
auto p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD avgPlaquette(const GaugeLorentz &Umu) {
RealD sumplaq = sumPlaquette(Umu);
double vol = Umu.Grid()->gSites();
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// sum over all spatial planes of plaquette
//////////////////////////////////////////////////
static void siteSpatialPlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd-1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
////////////////////////////////////
// sum over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
siteSpatialPlaquette(Plaq, U);
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(Plaq, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
//////////////////////////////////////////////////
// average over all x,y,z and over all spatial planes of plaquette
//////////////////////////////////////////////////
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
assert(sumplaq.size() == Lt);
double vol = Umu.Grid()->gSites() / Lt;
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
for(int t=0;t<Lt;t++)
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
return sumplaq;
}
//////////////////////////////////////////////////
// average over all x,y,z the temporal loop
//////////////////////////////////////////////////
static ComplexD avgPolyakovLoop(const GaugeField &Umu) { //assume Nd=4
GaugeMat Ut(Umu.Grid()), P(Umu.Grid());
ComplexD out;
int T = Umu.Grid()->GlobalDimensions()[3];
int X = Umu.Grid()->GlobalDimensions()[0];
int Y = Umu.Grid()->GlobalDimensions()[1];
int Z = Umu.Grid()->GlobalDimensions()[2];
Ut = peekLorentz(Umu,3); //Select temporal direction
P = Ut;
for (int t=1;t<T;t++){
P = Gimpl::CovShiftForward(Ut,3,P);
}
RealD norm = 1.0/(Nc*X*Y*Z*T);
out = sum(trace(P))*norm;
return out;
}
//////////////////////////////////////////////////
// average over traced single links
//////////////////////////////////////////////////
static RealD linkTrace(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
ComplexField Tr(Umu.Grid());
Tr = Zero();
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
Tr = Tr + trace(U[mu]);
}
auto Tp = sum(Tr);
auto p = TensorRemove(Tp);
double vol = Umu.Grid()->gSites();
return p.real() / vol / (4.0 * Nc ) ;
};
//////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
int nu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = Zero();
if (nu != mu) {
// mu
// ^
// |__> nu
// __
// |
// __|
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
mu);
// __
// |
// |__
//
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
mu);
}
}
// For the force term
/*
static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
// this operation is taking too much time
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = Zero();
GaugeMat tmp1(grid);
GaugeMat tmp2(grid);
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// this is ~10% faster than the Staple -- PAB: so what it gives the WRONG answers for other BC's!
tmp1 = Cshift(U[nu], mu, 1);
tmp2 = Cshift(U[mu], nu, 1);
staple += tmp1* adj(U[nu]*tmp2);
tmp2 = adj(U[mu]*tmp1)*U[nu];
staple += Cshift(tmp2, nu, -1);
}
}
staple = U[mu]*staple;
}
*/
//////////////////////////////////////////////////
// the sum over all nu-oriented staples for nu != mu on each site
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
Staple(staple, U, mu);
}
static void Staple(GaugeMat &staple, const std::vector<GaugeMat> &U, int mu) {
staple = Zero();
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// mu
// ^
// |__> nu
// __
// |
// __|
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
mu);
// __
// |
// |__
//
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])), mu);
}
}
}
/////////////
//Staples for each direction mu, summed over nu != mu
//staple: output staples for each mu (Nd)
//U: link array (Nd)
/////////////
static void StapleAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U) {
assert(staple.size() == Nd); assert(U.size() == Nd);
for(int mu=0;mu<Nd;mu++) Staple(staple[mu], U, mu);
}
//Padded cell implementation of the staple method for all mu, summed over nu != mu
//staple: output staple for each mu, summed over nu != mu (Nd)
//U_padded: the gauge link fields padded out using the PaddedCell class
//Cell: the padded cell class
static void StaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
assert(Cell.depth >= 1);
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
//Generate shift arrays
std::vector<Coordinate> shifts;
for(int mu=0;mu<Nd;mu++){
for(int nu=0;nu<Nd;nu++){
if(nu != mu){
Coordinate shift_0(Nd,0);
Coordinate shift_mu(Nd,0); shift_mu[mu]=1;
Coordinate shift_nu(Nd,0); shift_nu[nu]=1;
Coordinate shift_mnu(Nd,0); shift_mnu[nu]=-1;
Coordinate shift_mnu_pmu(Nd,0); shift_mnu_pmu[nu]=-1; shift_mnu_pmu[mu]=1;
//U_nu(x+mu)U^dag_mu(x+nu) U^dag_nu(x)
shifts.push_back(shift_0);
shifts.push_back(shift_nu);
shifts.push_back(shift_mu);
//U_nu^dag(x-nu+mu) U_mu^dag(x-nu) U_nu(x-nu)
shifts.push_back(shift_mnu);
shifts.push_back(shift_mnu);
shifts.push_back(shift_mnu_pmu);
}
}
}
//Generate local stencil
GeneralLocalStencil gStencil(ggrid,shifts);
GaugeMat gStaple(ggrid);
int off = 0;
for(int mu=0;mu<Nd;mu++){
gStaple = Zero();
for(int nu=0;nu<Nd;nu++){
if(nu != mu){
{
autoView( rgStaple_v , gStaple, AcceleratorRead);
autoView( gStaple_v , gStaple, AcceleratorWrite);
auto gStencil_v = gStencil.View();
autoView( Ug_mu_v , U_padded[mu], AcceleratorRead);
autoView( Ug_nu_v , U_padded[nu], AcceleratorRead);
accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
auto stencil_ss = coalescedRead(rgStaple_v[ss]);
GeneralStencilEntry const* e = gStencil_v.GetEntry(off,ss);
auto Udag_nu_x = adj(coalescedReadGeneralPermute(Ug_nu_v[e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(off+1,ss);
auto Udag_mu_xpnu = adj(coalescedReadGeneralPermute(Ug_mu_v[e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(off+2,ss);
auto U_nu_xpmu = coalescedReadGeneralPermute(Ug_nu_v[e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U_nu_xpmu * Udag_mu_xpnu * Udag_nu_x;
e = gStencil_v.GetEntry(off+3,ss);
auto U_nu_xmnu = coalescedReadGeneralPermute(Ug_nu_v[e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(off+4,ss);
auto Udag_mu_xmnu = adj(coalescedReadGeneralPermute(Ug_mu_v[e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(off+5,ss);
auto Udag_nu_xmnu_pmu = adj(coalescedReadGeneralPermute(Ug_nu_v[e->_offset], e->_permute, Nd));
stencil_ss = stencil_ss + Udag_nu_xmnu_pmu * Udag_mu_xmnu * U_nu_xmnu;
coalescedWrite(gStaple_v[ss],stencil_ss);
}
);
} //ensure views are all closed!
off += 6;
}//nu!=mu
}//nu loop
staple[mu] = Cell.Extract(gStaple);
}//mu loop
}
//////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu, upper part
//////////////////////////////////////////////////
static void StapleUpper(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
int nu) {
if (nu != mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);// some redundant copies
}
// mu
// ^
// |__> nu
// __
// |
// __|
//
staple = Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
mu);
}
}
////////////////////////////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu, lower part
////////////////////////////////////////////////////////////////////////
static void StapleLower(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
int nu) {
if (nu != mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);// some redundant copies
}
// mu
// ^
// |__> nu
// __
// |
// |__
//
//
staple = Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
mu);
}
}
//////////////////////////////////////////////////////
// Field Strength
//////////////////////////////////////////////////////
static void FieldStrength(GaugeMat &FS, const GaugeLorentz &Umu, int mu, int nu){
// Fmn +--<--+ Ut +--<--+
// | | | |
// (x)+-->--+ +-->--+(x) - h.c.
// | | | |
// +--<--+ +--<--+
GaugeMat Vup(Umu.Grid()), Vdn(Umu.Grid());
StapleUpper(Vup, Umu, mu, nu);
StapleLower(Vdn, Umu, mu, nu);
GaugeMat v = Vup - Vdn;
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
GaugeMat vu = v*u;
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
FS = 0.125*(FS - adj(FS));
}
static Real TopologicalCharge(const GaugeLorentz &U){
// 4d topological charge
assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
GaugeMat Bx(U.Grid()), By(U.Grid()), Bz(U.Grid());
FieldStrength(Bx, U, Ydir, Zdir);
FieldStrength(By, U, Zdir, Xdir);
FieldStrength(Bz, U, Xdir, Ydir);
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
GaugeMat Ex(U.Grid()), Ey(U.Grid()), Ez(U.Grid());
FieldStrength(Ex, U, Tdir, Xdir);
FieldStrength(Ey, U, Tdir, Ydir);
FieldStrength(Ez, U, Tdir, Zdir);
double coeff = 8.0/(32.0*M_PI*M_PI);
ComplexField qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
auto Tq = sum(qfield);
return TensorRemove(Tq).real();
}
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
//Clockwise ordering
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
//Upper right loop
GaugeMat tmp = BmuI;
for(int i=1;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
FS = tmp;
//Upper left loop
tmp = BnuI;
for(int j=1;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
FS = FS + tmp;
//Lower right loop
tmp = FnuI;
for(int j=1;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
for(int i=0;i<M;i++)
tmp = Fmu(tmp);
FS = FS + tmp;
//Lower left loop
tmp = FmuI;
for(int i=1;i<M;i++)
tmp = Fmu(tmp);
for(int j=0;j<N;j++)
tmp = Fnu(tmp);
for(int i=0;i<M;i++)
tmp = Bmu(tmp);
for(int j=0;j<N;j++)
tmp = Bnu(tmp);
FS = FS + tmp;
#undef Fmu
#undef Bmu
#undef Fnu
#undef Bnu
#undef FmuI
#undef BmuI
#undef FnuI
#undef BnuI
}
//Field strength from MxN Wilson loop
//Note F_numu = - F_munu
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
if(M == N){
GaugeMat F(Umu.Grid());
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
FS = 0.125 * ( F - adj(F) );
}else{
//Average over both orientations
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
}
}
//Topological charge contribution from MxN Wilson loops
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
//output is the charge by timeslice: sum over timeslices to obtain the total
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
assert(Nd == 4);
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
//Note F_numu = - F_munu
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
//Use nu > mu
for(int mu=0;mu<Nd-1;mu++){
for(int nu=mu+1; nu<Nd; nu++){
F[mu][nu] = new GaugeMat(U.Grid());
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
}
}
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
ComplexField fsum(U.Grid());
fsum = Zero();
for(int c=0;c<3;c++){
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
int eps = signs[c];
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
}
for(int mu=0;mu<Nd-1;mu++)
for(int nu=mu+1; nu<Nd; nu++)
delete F[mu][nu];
typedef typename ComplexField::scalar_object sobj;
std::vector<sobj> Tq;
sliceSum(fsum, Tq, Nd-1);
std::vector<Real> out(Tq.size());
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
return out;
}
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
Real out(0);
for(int t=0;t<Tq.size();t++) out += Tq[t];
return out;
}
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
//Use coefficients from hep-lat/9701012
//1x1 : c1=(19.-55.*c5)/9.
//2x2 : c2=(1-64.*c5)/9.
//1x2 : c3=(-64.+640.*c5)/45.
//1x3 : c4=1./5.-2.*c5
//3x3 : c5=1./20.
//Output array outer index contains the loops in the above order
//Inner index is the time coordinate
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<std::vector<Real> > out(5);
for(int i=0;i<5;i++){
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
}
return out;
}
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
std::vector<Real> out(5);
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
for(int i=0;i<5;i++){
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
}
return out;
}
//Compute the 5Li topological charge
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
double c5=1./20.;
double c4=1./5.-2.*c5;
double c3=(-64.+640.*c5)/45.;
double c2=(1-64.*c5)/9.;
double c1=(19.-55.*c5)/9.;
int Lt = loops[0].size();
std::vector<Real> out(Lt,0.);
for(int t=0;t<Lt;t++)
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
return out;
}
static Real TopologicalCharge5Li(const GaugeLorentz &U){
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
Real Q = 0.;
for(int t=0;t<Qt.size();t++) Q += Qt[t];
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
return Q;
}
//////////////////////////////////////////////////////
// Similar to above for rectangle is required
//////////////////////////////////////////////////////
static void dirRectangle(GaugeMat &rect, const std::vector<GaugeMat> &U,
const int mu, const int nu) {
rect = Gimpl::CovShiftForward(
U[mu], mu, Gimpl::CovShiftForward(U[mu], mu, U[nu])) * // ->->|
adj(Gimpl::CovShiftForward(
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[mu])));
rect = rect +
Gimpl::CovShiftForward(
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])) * // ->||
adj(Gimpl::CovShiftForward(
U[nu], nu, Gimpl::CovShiftForward(U[nu], nu, U[mu])));
}
static void traceDirRectangle(ComplexField &rect,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0].Grid());
dirRectangle(sp, U, mu, nu);
rect = trace(sp);
}
static void siteRectangle(ComplexField &Rect,
const std::vector<GaugeMat> &U) {
ComplexField siteRect(U[0].Grid());
Rect = Zero();
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirRectangle(siteRect, U, mu, nu);
Rect = Rect + siteRect;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD sumRectangle(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Rect(Umu.Grid());
siteRectangle(Rect, U);
auto Tp = sum(Rect);
auto p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD avgRectangle(const GaugeLorentz &Umu) {
RealD sumrect = sumRectangle(Umu);
double vol = Umu.Grid()->gSites();
double faces = (1.0 * Nd * (Nd - 1)); // 2 distinct orientations summed
return sumrect / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// the sum over all staples on each site
//////////////////////////////////////////////////
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
U2 = U * CshiftLink(U, mu, 1);
}
////////////////////////////////////////////////////////////////////////////
// Hop by two optimisation strategy. Use RectStapleDouble to obtain 'U2'
////////////////////////////////////////////////////////////////////////////
static void RectStapleOptimised(GaugeMat &Stap, const std::vector<GaugeMat> &U2,
const std::vector<GaugeMat> &U, int mu) {
Stap = Zero();
GridBase *grid = U[0].Grid();
GaugeMat Staple2x1(grid);
GaugeMat tmp(grid);
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// Up staple ___ ___
// | |
tmp = CshiftLink(adj(U[nu]), nu, -1);
tmp = adj(U2[mu]) * tmp;
tmp = CshiftLink(tmp, mu, -2);
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
// Down staple
// |___ ___|
//
tmp = adj(U2[mu]) * U[nu];
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, CshiftLink(tmp, mu, -2));
// ___ ___
// | ___|
// |___ ___|
//
Stap += CshiftLink(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
// ___ ___
// |___ |
// |___ ___|
//
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
// Stap+= Cshift(tmp,mu,1) ;
Stap += CshiftLink(Staple2x1, mu, 1) * CshiftLink(U[mu], mu, -1);
;
// --
// | |
//
// | |
tmp = CshiftLink(adj(U2[nu]), nu, -2);
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
tmp = U2[nu] * CshiftLink(tmp, nu, 2);
Stap += CshiftLink(tmp, mu, 1);
// | |
//
// | |
// --
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
tmp = adj(U2[nu]) * tmp;
tmp = CshiftLink(tmp, nu, -2);
Stap += CshiftLink(tmp, mu, 1);
}
}
}
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
Stap = Zero();
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// __ ___
// | __ |
//
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[mu], mu,
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
mu);
// __
// |__ __ |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(U[mu], mu, U[nu])))),
mu);
// __
// |__ __ |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[mu])))),
mu);
// __ ___
// |__ |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(U[nu], nu, U[mu])))),
mu);
// --
// | |
//
// | |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
mu);
// | |
//
// | |
// --
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])))),
mu);
}
}
}
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
RectStapleUnoptimised(Stap, Umu, mu);
}
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
int mu) {
RectStapleOptimised(Stap, U2, U, mu);
}
//////////////////////////////////////////////////////
//Compute the rectangular staples for all orientations
//Stap : Array of staples (Nd)
//U: Gauge links in each direction (Nd)
/////////////////////////////////////////////////////
static void RectStapleAll(std::vector<GaugeMat> &Stap, const std::vector<GaugeMat> &U){
assert(Stap.size() == Nd); assert(U.size() == Nd);
std::vector<GaugeMat> U2(Nd,U[0].Grid());
for(int mu=0;mu<Nd;mu++) RectStapleDouble(U2[mu], U[mu], mu);
for(int mu=0;mu<Nd;mu++) RectStapleOptimised(Stap[mu], U2, U, mu);
}
//Padded cell implementation of the rectangular staple method for all mu, summed over nu != mu
//staple: output staple for each mu, summed over nu != mu (Nd)
//U_padded: the gauge link fields padded out using the PaddedCell class
//Cell: the padded cell class
static void RectStaplePaddedAll(std::vector<GaugeMat> &staple, const std::vector<GaugeMat> &U_padded, const PaddedCell &Cell) {
assert(U_padded.size() == Nd); assert(staple.size() == Nd);
assert(U_padded[0].Grid() == (GridBase*)Cell.grids.back());
assert(Cell.depth >= 2);
GridBase *ggrid = U_padded[0].Grid(); //padded cell grid
std::vector<Coordinate> shifts;
for (int mu = 0; mu < Nd; mu++){
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
auto genShift = [&](int mushift,int nushift){
Coordinate out(Nd,0); out[mu]=mushift; out[nu]=nushift; return out;
};
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
shifts.push_back(genShift(0,0));
shifts.push_back(genShift(0,+1));
shifts.push_back(genShift(+1,+1));
shifts.push_back(genShift(+2,0));
shifts.push_back(genShift(+1,0));
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(+1,-1));
shifts.push_back(genShift(+2,-1));
shifts.push_back(genShift(+1,0));
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
shifts.push_back(genShift(-1,0));
shifts.push_back(genShift(-1,-1));
shifts.push_back(genShift(-1,-1));
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(+1,-1));
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
shifts.push_back(genShift(-1,0));
shifts.push_back(genShift(-1,0));
shifts.push_back(genShift(-1,+1));
shifts.push_back(genShift(0,+1));
shifts.push_back(genShift(+1,0));
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
shifts.push_back(genShift(0,0));
shifts.push_back(genShift(0,+1));
shifts.push_back(genShift(0,+2));
shifts.push_back(genShift(+1,+1));
shifts.push_back(genShift(+1,0));
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
shifts.push_back(genShift(0,-1));
shifts.push_back(genShift(0,-2));
shifts.push_back(genShift(0,-2));
shifts.push_back(genShift(+1,-2));
shifts.push_back(genShift(+1,-1));
}
}
}
size_t nshift = shifts.size();
int mu_off_delta = nshift / Nd;
GeneralLocalStencil gStencil(ggrid,shifts);
//Open views to padded gauge links and keep open over mu loop
typedef LatticeView<typename GaugeMat::vector_object> GaugeViewType;
size_t vsize = Nd*sizeof(GaugeViewType);
GaugeViewType* Ug_dirs_v_host = (GaugeViewType*)malloc(vsize);
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i] = U_padded[i].View(AcceleratorRead);
GaugeViewType* Ug_dirs_v = (GaugeViewType*)acceleratorAllocDevice(vsize);
acceleratorCopyToDevice(Ug_dirs_v_host,Ug_dirs_v,vsize);
GaugeMat gStaple(ggrid); //temp staple object on padded grid
int offset = 0;
for(int mu=0; mu<Nd; mu++){
{ //view scope
autoView( gStaple_v , gStaple, AcceleratorWrite);
auto gStencil_v = gStencil.View();
accelerator_for(ss, ggrid->oSites(), ggrid->Nsimd(), {
decltype(coalescedRead(Ug_dirs_v[0][0])) stencil_ss;
stencil_ss = Zero();
int s=offset;
for(int nu=0;nu<Nd;nu++){
if(nu != mu){
//tmp6 = tmp5(x+mu) = U_mu(x+mu)U_nu(x+2mu)U_mu^dag(x+nu+mu) U_mu^dag(x+nu) U_nu^dag(x)
GeneralStencilEntry const* e = gStencil_v.GetEntry(s++,ss);
auto U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
auto U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
auto U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
auto U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
auto U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U_mu(x+mu)U^dag_nu(x-nu+2mu)U^dag_mu(x-nu+mu)U^dag_mu(x-nu)U_nu(x-nu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U^dag_nu(x-nu+mu)U^dag_mu(x-nu)U^dag_mu(x-mu-nu)U_nu(x-mu-nu)U_mu(x-mu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U_nu(x+mu)U_mu^dag(x+nu)U_mu^dag(x-mu+nu)U_nu^dag(x-mu)U_mu(x-mu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp6 = tmp5(x+mu) = U_nu(x+mu)U_nu(x+mu+nu)U_mu^dag(x+2nu)U_nu^dag(x+nu)U_nu^dag(x)
e = gStencil_v.GetEntry(s++,ss);
U0 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U1 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U4 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
//tmp5 = tmp4(x+mu) = U_nu^dag(x+mu-nu)U_nu^dag(x+mu-2nu)U_mu^dag(x-2nu)U_nu(x-2nu)U_nu(x-nu)
e = gStencil_v.GetEntry(s++,ss);
U0 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U1 = coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd);
e = gStencil_v.GetEntry(s++,ss);
U2 = adj(coalescedReadGeneralPermute(Ug_dirs_v[mu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U3 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
e = gStencil_v.GetEntry(s++,ss);
U4 = adj(coalescedReadGeneralPermute(Ug_dirs_v[nu][e->_offset], e->_permute, Nd));
stencil_ss = stencil_ss + U4*U3*U2*U1*U0;
}
}
coalescedWrite(gStaple_v[ss],stencil_ss);
}
);
offset += mu_off_delta;
}//kernel/view scope
staple[mu] = Cell.Extract(gStaple);
}//mu loop
for(int i=0;i<Nd;i++) Ug_dirs_v_host[i].ViewClose();
free(Ug_dirs_v_host);
acceleratorFreeDevice(Ug_dirs_v);
}
//////////////////////////////////////////////////////
//Compute the 1x1 and 1x2 staples for all orientations
//Stap : Array of staples (Nd)
//RectStap: Array of rectangular staples (Nd)
//U: Gauge links in each direction (Nd)
/////////////////////////////////////////////////////
static void StapleAndRectStapleAll(std::vector<GaugeMat> &Stap, std::vector<GaugeMat> &RectStap, const std::vector<GaugeMat> &U){
#if 0
StapleAll(Stap, U);
RectStapleAll(RectStap, U);
#else
//Use the padded cell with maximal reuse
PaddedCell Ghost(2, dynamic_cast<GridCartesian*>(U[0].Grid()));
CshiftImplGauge<Gimpl> cshift_impl;
std::vector<GaugeMat> U_pad(Nd, Ghost.grids.back());
for(int mu=0;mu<Nd;mu++) U_pad[mu] = Ghost.Exchange(U[mu], cshift_impl);
StaplePaddedAll(Stap, U_pad, Ghost);
RectStaplePaddedAll(RectStap, U_pad, Ghost);
#endif
}
//////////////////////////////////////////////////
// Wilson loop of size (R1, R2), oriented in mu,nu plane
//////////////////////////////////////////////////
static void wilsonLoop(GaugeMat &wl, const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
wl = U[nu];
for(int i = 0; i < Rnu-1; i++){
wl = Gimpl::CovShiftForward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftForward(U[mu], mu, wl);
}
for(int i = 0; i < Rnu; i++){
wl = Gimpl::CovShiftBackward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftBackward(U[mu], mu, wl);
}
}
//////////////////////////////////////////////////
// trace of Wilson Loop oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceWilsonLoop(LatticeComplex &wl,
const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
GaugeMat sp(U[0].Grid());
wilsonLoop(sp, U, Rmu, Rnu, mu, nu);
wl = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of Wilson loop
//////////////////////////////////////////////////
static void siteWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0].Grid());
Wl = Zero();
for (int mu = 1; mu < U[0].Grid()->_ndimension; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over planes of Wilson loop with length R1
// in the time direction
//////////////////////////////////////////////////
static void siteTimelikeWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0].Grid());
int ndim = U[0].Grid()->_ndimension;
Wl = Zero();
for (int nu = 0; nu < ndim - 1; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, ndim-1, nu);
Wl = Wl + siteWl;
}
}
//////////////////////////////////////////////////
// sum Wilson loop over all planes orthogonal to the time direction
//////////////////////////////////////////////////
static void siteSpatialWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0].Grid());
Wl = Zero();
for (int mu = 1; mu < U[0].Grid()->_ndimension - 1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real sumWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu.Grid());
siteWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu.Grid());
siteTimelikeWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu.Grid());
siteSpatialWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real avgWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu.Grid()->_ndimension;
Real sumWl = sumWilsonLoop(Umu, R1, R2);
Real vol = Umu.Grid()->gSites();
Real faces = 1.0 * ndim * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real avgTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu.Grid()->_ndimension;
Real sumWl = sumTimelikeWilsonLoop(Umu, R1, R2);
Real vol = Umu.Grid()->gSites();
Real faces = 1.0 * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real avgSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu.Grid()->_ndimension;
Real sumWl = sumSpatialWilsonLoop(Umu, R1, R2);
Real vol = Umu.Grid()->gSites();
Real faces = 1.0 * (ndim - 1) * (ndim - 2);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
};
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
typedef WilsonLoops<PeriodicGimplR> U1WilsonLoops;
typedef WilsonLoops<PeriodicGimplR> SU2WilsonLoops;
typedef WilsonLoops<PeriodicGimplR> SU3WilsonLoops;
NAMESPACE_END(Grid);
#endif