1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-19 08:17:05 +01:00
Files
Grid/Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h

435 lines
20 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////
// Generic rational approximation for ratios of operators
/////////////////////////////////////////////////////////
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
BIG WARNING:
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
Thus for DWF the numerator operator is the Pauli-Villars operator
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
*/
template<class Impl>
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
typedef RationalActionParams Params;
Params param;
RealD RefreshAction;
//For action evaluation
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
//For the MD integration
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionField PhiEven; // the pseudo fermion field for this trajectory
FermionField PhiOdd; // the pseudo fermion field for this trajectory
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
double error = remez.generateApprox(approx_degree,1,inv_pow);
if(error > CG_tolerance)
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
approx.Init(remez, CG_tolerance,false);
approx_inv.Init(remez, CG_tolerance,true);
}
protected:
static constexpr bool Numerator = true;
static constexpr bool Denominator = false;
//Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out);
}
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
msCG(schurOp,in, out_elems, out);
}
//Allow derived classes to override the gauge import
virtual void ImportGauge(const GaugeField &U){
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
}
public:
// allow non-uniform tolerances
void SetTolerances(std::vector<RealD> action_tolerance,std::vector<RealD> md_tolerance)
{
assert(action_tolerance.size()==ApproxPowerAction.tolerances.size());
assert( md_tolerance.size()==ApproxPowerMD.tolerances.size());
// Fix up the tolerances
for(int i=0;i<ApproxPowerAction.tolerances.size();i++){
ApproxPowerAction.tolerances[i] = action_tolerance[i];
ApproxNegPowerAction.tolerances[i] = action_tolerance[i];
ApproxHalfPowerAction.tolerances[i] = action_tolerance[i];
ApproxNegHalfPowerAction.tolerances[i]= action_tolerance[i];
}
for(int i=0;i<ApproxPowerMD.tolerances.size();i++){
ApproxPowerMD.tolerances[i] = md_tolerance[i];
ApproxNegPowerMD.tolerances[i] = md_tolerance[i];
ApproxHalfPowerMD.tolerances[i] = md_tolerance[i];
ApproxNegHalfPowerMD.tolerances[i]= md_tolerance[i];
}
// Print out - could deprecate
for(int i=0;i<ApproxPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxPowerMD shift["<<i<<"] "
<<" pole "<<ApproxPowerMD.poles[i]
<<" residue "<<ApproxPowerMD.residues[i]
<<" tol "<<ApproxPowerMD.tolerances[i]<<std::endl;
}
/*
for(int i=0;i<ApproxNegPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxNegPowerMD shift["<<i<<"] "
<<" pole "<<ApproxNegPowerMD.poles[i]
<<" residue "<<ApproxNegPowerMD.residues[i]
<<" tol "<<ApproxNegPowerMD.tolerances[i]<<std::endl;
}
for(int i=0;i<ApproxHalfPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxHalfPowerMD shift["<<i<<"] "
<<" pole "<<ApproxHalfPowerMD.poles[i]
<<" residue "<<ApproxHalfPowerMD.residues[i]
<<" tol "<<ApproxHalfPowerMD.tolerances[i]<<std::endl;
}
for(int i=0;i<ApproxNegHalfPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxNegHalfPowerMD shift["<<i<<"] "
<<" pole "<<ApproxNegHalfPowerMD.poles[i]
<<" residue "<<ApproxNegHalfPowerMD.residues[i]
<<" tol "<<ApproxNegHalfPowerMD.tolerances[i]<<std::endl;
}
*/
}
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
const Params & p
) :
NumOp(_NumOp),
DenOp(_DenOp),
PhiOdd (_NumOp.FermionRedBlackGrid()),
PhiEven(_NumOp.FermionRedBlackGrid()),
param(p)
{
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
AlgRemez remez(param.lo,param.hi,param.precision);
//Generate approximations for action eval
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
//Generate approximations for MD
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
}else{
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
ApproxPowerMD = ApproxPowerAction;
ApproxNegPowerMD = ApproxNegPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
ApproxHalfPowerMD = ApproxHalfPowerAction;
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
}
std::vector<RealD> action_tolerance(ApproxHalfPowerAction.tolerances.size(),param.action_tolerance);
std::vector<RealD> md_tolerance (ApproxHalfPowerMD.tolerances.size(),param.md_tolerance);
SetTolerances(action_tolerance, md_tolerance);
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
};
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
return sstream.str();
}
//Access the fermion field
const FermionField &getPhiOdd() const{ return PhiOdd; }
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField eta(NumOp.FermionGrid());
// P(eta) \propto e^{- eta^dag eta}
//
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta); eta=eta*scale;
refresh(U,eta);
}
//Allow for manual specification of random field for testing
void refresh(const GaugeField &U, const FermionField &eta) {
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
//
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp(NumOp.FermionRedBlackGrid());
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
ImportGauge(U);
// MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = Zero();
RefreshAction = norm2( etaOdd );
std::cout<<GridLogMessage << action_name() << " refresh: action is " << RefreshAction << std::endl;
};
//////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//////////////////////////////////////////////////////
virtual RealD Sinitial(const GaugeField &U) {
std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
return RefreshAction;
}
virtual RealD S(const GaugeField &U) {
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
ImportGauge(U);
FermionField X(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
// VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
// Randomly apply rational bounds checks.
int rcheck = rand();
auto grid = NumOp.FermionGrid();
auto r=rand();
grid->Broadcast(0,r);
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
FermionField gauss(NumOp.FermionRedBlackGrid());
gauss = PhiOdd;
SchurDifferentiableOperator<Impl> MdagM(DenOp);
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
HighBoundCheck(MdagM,gauss,param.hi);
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
}
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
RealD action = norm2(Y);
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
return action;
};
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
const int n_f = ApproxNegPowerMD.poles.size();
const int n_pv = ApproxHalfPowerMD.poles.size();
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
FermionField Y(NumOp.FermionRedBlackGrid());
GaugeField tmp(NumOp.GaugeGrid());
ImportGauge(U);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
SchurDifferentiableOperator<Impl> MdagM(DenOp);
SchurDifferentiableOperator<Impl> VdagV(NumOp);
RealD ak;
dSdU = Zero();
// With these building blocks
//
// dS/dU =
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
//(1)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
for(int k=0;k<n_f;k++){
ak = ApproxNegPowerMD.residues[k];
MdagM.Mpc(MfMpvPhi_k[k],Y);
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
}
//(2)
//(3)
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
for(int k=0;k<n_pv;k++){
ak = ApproxHalfPowerMD.residues[k];
VdagV.Mpc(MpvPhi_k[k],Y);
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
}
//dSdU = Ta(dSdU);
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
};
};
NAMESPACE_END(Grid);
#endif