1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/pseudofermion/TwoFlavour.h
Peter Boyle 0b603225d1 Two flavour HMC for Wilson/Wilson is conserving energy.
Still to check plaq and <e(-dH)>, but nevertheless this is
progress
2015-07-29 17:53:39 +09:00

210 lines
6.5 KiB
C++

#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_H
namespace Grid{
namespace QCD{
// Placeholder comments:
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 V^dag phi
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
///////////////////////////////////////
// One flavour rational
///////////////////////////////////////
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
//
// Here, M is some operator
// N and D makeup the rat. poly
//
// Need
// dS_f/dU = chi^dag P/Q d[N/D] P/Q chi
//
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
//
// N/D is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(M^dagM + bk)
//
// d[N/D] is then
//
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
//
// Need
//
// Mf Phi_k = [MdagM+bk]^{-1} Phi
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
//
// With these building blocks
//
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
// S = innerprodReal(Phi,Mf Phi);
///////////////////////////////////////
// One flavour rational ratio
///////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
//
// Here, M is some 5D operator and V is the Pauli-Villars field
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
//
// Need
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
// + chi^dag P/Q d[N/D] P/Q chi
// + chi^dag P/Q N/D d[P/Q] chi
//
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
//
// P/Q is expressed as partial fraction expansion:
//
// a0 + \sum_k ak/(V^dagV + bk)
//
// d[P/Q] is then
//
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
//
// and similar for N/D.
//
// Need
// MpvPhi_k = [Vdag V + bk]^{-1} chi
//
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
//
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
//
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
//
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
//
// With these building blocks
//
// dS/dU =
// \sum_k -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k <- deriv on P left
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k
// + \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any dop
////////////////////////////////////////////////////////////////////////
template<class GaugeField,class MatrixField,class FermionField>
class TwoFlavourPseudoFermionAction : public Action<GaugeField> {
private:
FermionOperator<FermionField,GaugeField> & FermOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
GridBase &Grid;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourPseudoFermionAction(FermionOperator<FermionField,GaugeField> &Op,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS,
GridBase &_Grid
) : FermOp(Op), DerivativeSolver(DS), ActionSolver(AS), Phi(&_Grid), Grid(_Grid) {
};
//////////////////////////////////////////////////////////////////////////////////////
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
//////////////////////////////////////////////////////////////////////////////////////
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (MdagM)^-1 phi}
// Phi = Mdag eta
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2).
// and must multiply by 0.707....
//
// Chroma has this scale factor: two_flavor_monomial_w.h
// IroIro: does not use this scale. It is absorbed by a change of vars
// in the Phi integral, and thus is only an irrelevant prefactor for the partition function.
//
RealD scale = std::sqrt(0.5);
FermionField eta(&Grid);
gaussian(pRNG,eta);
FermOp.Mdag(eta,Phi);
Phi=Phi*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag (Mdag M)^-1 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
FermOp.ImportGauge(U);
FermionField X(&Grid);
FermionField Y(&Grid);
MdagMLinearOperator<FermionOperator<FermionField,GaugeField> ,FermionField> MdagMOp(FermOp);
X=zero;
ActionSolver(MdagMOp,Phi,X);
MdagMOp.Op(X,Y);
RealD action = norm2(Y);
std::cout << GridLogMessage << "Pseudofermion action "<<action<<std::endl;
return action;
};
//////////////////////////////////////////////////////
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
// = - phi^dag M^-1 dM (MdagM)^-1 phi - phi^dag (MdagM)^-1 dMdag dM (Mdag)^-1 phi
//
// = - Ydag dM X - Xdag dMdag Y
//
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
FermOp.ImportGauge(U);
FermionField X(&Grid);
FermionField Y(&Grid);
GaugeField tmp(&Grid);
MdagMLinearOperator<FermionOperator<FermionField,GaugeField> ,FermionField> MdagMOp(FermOp);
X=zero;
DerivativeSolver(MdagMOp,Phi,X);
MdagMOp.Op(X,Y);
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=dSdU+tmp;
dSdU = Ta(dSdU);
};
};
}
}
#endif