1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-06 12:15:55 +01:00
Grid/Grid/util/EigenUtil.h
2019-03-25 15:50:29 +00:00

284 lines
12 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid/util/EigenUtil.h
Copyright (C) 2019
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_UTIL_EIGENUTIL_H
#define GRID_UTIL_EIGENUTIL_H
#include <Grid/tensors/Tensor_traits.h>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
namespace Grid {
// Custom iterator for Eigen tensors
namespace EigenUtil {
template <typename ETensor, bool bConst> // Is the tensor constant
class TensorIterator_raw{
public:
using Index = typename ETensor::Index;
using Scalar = typename ETensor::Scalar;
using FullIndex = std::array<Index, ETensor::NumIndices>;
const ETensor * pET;
const Index end; // same as pET->size()
Index position; // position (memory order)
Index Seq; // sequence (what our position would be if we were column major)
FullIndex indexPos;
FullIndex indexSize;
inline TensorIterator_raw( ETensor & eT, Index pos = 0 ) : pET{&eT}, position{pos}, Seq{pos}, end{pET->size()} {
for( int i = 0 ; i < ETensor::NumIndices ; i++ ) {
indexPos[i] = 0;
indexSize[i] = pET->dimension(i);
}
}
inline TensorIterator_raw<ETensor, bConst> & operator++() {
auto sz = pET->size();
if( position < sz ) {
position++;
if( ETensor::Options & Eigen::RowMajor ) {
for( int i = ETensor::NumIndices - 1; i != -1 && ++indexPos[i] == indexSize[i]; i-- )
indexPos[i] = 0;
Seq++;
} else {
for( int i = 0; i < ETensor::NumIndices && ++indexPos[i] == indexSize[i]; i++ )
indexPos[i] = 0;
Seq = 0;
for( int i = 0; i < ETensor::NumIndices; i++ ) {
Seq *= indexSize[i];
Seq += indexPos[i];
}
}
}
return * this;
}
inline typename std::conditional<bConst,const Scalar &,Scalar &>::type operator*() const {
assert( position >= 0 && position < pET->size() && "Attempt to access Eigen tensor iterator out of range" );
return ( ( typename std::conditional<bConst,const Scalar *,Scalar*>::type ) pET->data() )[position];
}
inline bool operator!=(const TensorIterator_raw<ETensor, bConst> &r)
{ return pET == nullptr || pET != r.pET || position != r.position; }
// These functions aren't rerquired for iterators, but they make using them easier
inline bool AtEnd() { return position == end; }
inline void DumpIndex(void) {
for( auto dim : indexPos )
std::cout << "[" << dim << "]";
}
};
}
}
// The only way I could get these iterators to work is to put the begin() and end() functions in the Eigen namespace
// So if Eigen ever defines these, we'll have a conflict and have to change this
namespace Eigen {
template <typename ETensor> using TensorIterator = Grid::EigenUtil::TensorIterator_raw< ETensor, false>;
template <typename ETensor> using TensorIteratorConst = Grid::EigenUtil::TensorIterator_raw<const ETensor, true>;
template <typename ETensor>
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIterator<ETensor>>::type
begin( ETensor & ET ) { return TensorIterator<ETensor>(ET); }
template <typename ETensor>
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIterator<ETensor>>::type
end( ETensor & ET ) { return TensorIterator<ETensor>(ET, ET.size()); }
template <typename ETensor>
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIteratorConst<ETensor>>::type
begin( const ETensor & ET ) { return TensorIteratorConst<ETensor>(ET); }
template <typename ETensor>
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIteratorConst<ETensor>>::type
end( const ETensor & ET ) { return TensorIteratorConst<ETensor>(ET, ET.size()); }
}
namespace Grid {
// for_all helper function to call the lambda for scalar
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
{
lambda( scalar, Seq++, MyIndex, GridTensorIndex );
}
// for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
{
using Traits = EigenIO::Traits<ETensor>;
const int InnerRank = Traits::Rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex, GridTensorIndex );
// Now increment SubIndex
for( int i = InnerRank - 1; i != -1 && ++GridTensorIndex[i] == DimGridTensor[i]; i-- )
GridTensorIndex[i] = 0;
}
}
// Calls a lamda (passing index and sequence number) for every member of an Eigen::Tensor
// For efficiency, iteration proceeds in memory order,
// ... but parameters guaranteed to be the same regardless of memory order
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
using Index = typename ETensor::Index;
using Traits = EigenIO::Traits<ETensor>;
// Check that the number of elements in the container is the product of tensor dimensions
const Index NumScalars = ET.size();
assert( NumScalars > 0 && "EigenUtil: tensor has no elements" );
Index ScalarElementCount{1};
const int rank{ETensor::NumIndices};
std::array<Index, rank> DimTensor, MyIndex;
for(int i = 0; i < rank; i++ ) {
DimTensor[i] = ET.dimension(i);
ScalarElementCount *= DimTensor[i];
MyIndex[i] = 0;
}
assert( NumScalars == ScalarElementCount && "EigenUtil: tensor size not product of dimensions" );
// Save the GridTensor dimensions
const int InnerRank{Traits::Rank};
std::array<int, InnerRank> DimGridTensor, GridTensorIndex;
for(int i = 0; i < InnerRank; i++ ) {
DimGridTensor[i] = Traits::Dimension(i);
GridTensorIndex[i] = 0;
}
// Now walk the tensor in memory order
Index Seq = 0;
Scalar * pScalar = ET.data();
for( Index j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex, DimGridTensor, GridTensorIndex );
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
if( ETensor::Options & Eigen::RowMajor ) {
for( int i = rank - 1; i != -1 && ++MyIndex[i] == DimTensor[i]; i-- )
MyIndex[i] = 0;
} else {
for( int i = 0; i < rank && ++MyIndex[i] == DimTensor[i]; i++ )
MyIndex[i] = 0;
Seq = 0;
for( int i = 0; i < rank; i++ ) {
Seq *= DimTensor[i];
Seq += MyIndex[i];
}
Seq *= Traits::count;
}
pScalar++;
}
}
// Sequential initialisation of tensors up to specified precision
// Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::Traits<ETensor>::is_complex>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<ETensor>::scalar_type Inc = 1, unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<ETensor>;
using scalar_type = typename Traits::scalar_type;
using Index = typename ETensor::Index;
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
const std::array<int, Traits::Rank> &ScalarIndex ) {
scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::setprecision(Precision) << x;
s >> x;
}
c = x;
} );
}
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::Traits<ETensor>::is_complex>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<ETensor>::scalar_type Inc={1,-1}, unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<ETensor>;
using scalar_type = typename Traits::scalar_type;
using Index = typename ETensor::Index;
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
const std::array<int, Traits::Rank> &ScalarIndex ) {
auto re = Inc.real();
auto im = Inc.imag();
re *= n;
im *= n;
if( Precision ) {
std::stringstream s;
s << std::setprecision(Precision) << re;
s >> re;
s.clear();
s << im;
s >> im;
}
c = scalar_type(re,im);
} );
}
// Helper to dump a tensor
template <typename T>
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
dump_tensor(T &t, const char * pName = nullptr)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
using Index = typename T::Index;
const int rank{T::NumIndices};
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank + Traits::Rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( int i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
for( int i = 0 ; i < Traits::Rank; i++ ) std::cout << "(" << Traits::Dimension(i) << ")";
std::cout << " in memory order:" << std::endl;
#ifdef OLD_DEFINITION
for_all( t, [&](scalar_type &c, Index n, const std::array<Index, rank> &TensorIndex,
const std::array<int, Traits::Rank> &ScalarIndex ){
std::cout << " ";
for( auto dim : TensorIndex )
std::cout << "[" << dim << "]";
for( auto dim : ScalarIndex )
std::cout << "(" << dim << ")";
std::cout << " = " << c << std::endl;
} );
#else
for( auto it = begin(t); !it.AtEnd(); ++it ) {
std::cout << " ";
it.DumpIndex();
std::cout << " = " << (const typename T::Scalar)(*it) << std::endl;
}
#endif
std::cout << "========================================" << std::endl;
}
template <typename T>
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
dump_tensor(T &t, const char * pName = nullptr)
{
std::cout << "Dumping non-tensor object ";
if( pName ) std::cout << pName;
std::cout << "=" << t;
}
}
#endif