mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-06 12:15:55 +01:00
284 lines
12 KiB
C++
284 lines
12 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Grid/util/EigenUtil.h
|
|
|
|
Copyright (C) 2019
|
|
|
|
Author: Michael Marshall <michael.marshall@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_UTIL_EIGENUTIL_H
|
|
#define GRID_UTIL_EIGENUTIL_H
|
|
#include <Grid/tensors/Tensor_traits.h>
|
|
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
|
|
|
namespace Grid {
|
|
// Custom iterator for Eigen tensors
|
|
namespace EigenUtil {
|
|
template <typename ETensor, bool bConst> // Is the tensor constant
|
|
class TensorIterator_raw{
|
|
public:
|
|
using Index = typename ETensor::Index;
|
|
using Scalar = typename ETensor::Scalar;
|
|
using FullIndex = std::array<Index, ETensor::NumIndices>;
|
|
const ETensor * pET;
|
|
const Index end; // same as pET->size()
|
|
Index position; // position (memory order)
|
|
Index Seq; // sequence (what our position would be if we were column major)
|
|
FullIndex indexPos;
|
|
FullIndex indexSize;
|
|
|
|
inline TensorIterator_raw( ETensor & eT, Index pos = 0 ) : pET{&eT}, position{pos}, Seq{pos}, end{pET->size()} {
|
|
for( int i = 0 ; i < ETensor::NumIndices ; i++ ) {
|
|
indexPos[i] = 0;
|
|
indexSize[i] = pET->dimension(i);
|
|
}
|
|
}
|
|
inline TensorIterator_raw<ETensor, bConst> & operator++() {
|
|
auto sz = pET->size();
|
|
if( position < sz ) {
|
|
position++;
|
|
if( ETensor::Options & Eigen::RowMajor ) {
|
|
for( int i = ETensor::NumIndices - 1; i != -1 && ++indexPos[i] == indexSize[i]; i-- )
|
|
indexPos[i] = 0;
|
|
Seq++;
|
|
} else {
|
|
for( int i = 0; i < ETensor::NumIndices && ++indexPos[i] == indexSize[i]; i++ )
|
|
indexPos[i] = 0;
|
|
Seq = 0;
|
|
for( int i = 0; i < ETensor::NumIndices; i++ ) {
|
|
Seq *= indexSize[i];
|
|
Seq += indexPos[i];
|
|
}
|
|
}
|
|
}
|
|
return * this;
|
|
}
|
|
inline typename std::conditional<bConst,const Scalar &,Scalar &>::type operator*() const {
|
|
assert( position >= 0 && position < pET->size() && "Attempt to access Eigen tensor iterator out of range" );
|
|
return ( ( typename std::conditional<bConst,const Scalar *,Scalar*>::type ) pET->data() )[position];
|
|
}
|
|
inline bool operator!=(const TensorIterator_raw<ETensor, bConst> &r)
|
|
{ return pET == nullptr || pET != r.pET || position != r.position; }
|
|
// These functions aren't rerquired for iterators, but they make using them easier
|
|
inline bool AtEnd() { return position == end; }
|
|
inline void DumpIndex(void) {
|
|
for( auto dim : indexPos )
|
|
std::cout << "[" << dim << "]";
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
// The only way I could get these iterators to work is to put the begin() and end() functions in the Eigen namespace
|
|
// So if Eigen ever defines these, we'll have a conflict and have to change this
|
|
namespace Eigen {
|
|
template <typename ETensor> using TensorIterator = Grid::EigenUtil::TensorIterator_raw< ETensor, false>;
|
|
template <typename ETensor> using TensorIteratorConst = Grid::EigenUtil::TensorIterator_raw<const ETensor, true>;
|
|
template <typename ETensor>
|
|
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIterator<ETensor>>::type
|
|
begin( ETensor & ET ) { return TensorIterator<ETensor>(ET); }
|
|
template <typename ETensor>
|
|
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIterator<ETensor>>::type
|
|
end( ETensor & ET ) { return TensorIterator<ETensor>(ET, ET.size()); }
|
|
template <typename ETensor>
|
|
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIteratorConst<ETensor>>::type
|
|
begin( const ETensor & ET ) { return TensorIteratorConst<ETensor>(ET); }
|
|
template <typename ETensor>
|
|
inline typename std::enable_if<Grid::EigenIO::is_tensor<ETensor>::value, TensorIteratorConst<ETensor>>::type
|
|
end( const ETensor & ET ) { return TensorIteratorConst<ETensor>(ET, ET.size()); }
|
|
}
|
|
|
|
namespace Grid {
|
|
// for_all helper function to call the lambda for scalar
|
|
template <typename ETensor, typename Lambda>
|
|
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
|
|
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
|
|
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
|
|
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
|
|
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
|
|
{
|
|
lambda( scalar, Seq++, MyIndex, GridTensorIndex );
|
|
}
|
|
|
|
// for_all helper function to call the lambda for container
|
|
template <typename ETensor, typename Lambda>
|
|
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
|
|
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
|
|
const std::array<typename ETensor::Index, ETensor::NumIndices> &MyIndex,
|
|
const std::array<int, EigenIO::Traits<ETensor>::Rank> &DimGridTensor,
|
|
std::array<int, EigenIO::Traits<ETensor>::Rank> &GridTensorIndex)
|
|
{
|
|
using Traits = EigenIO::Traits<ETensor>;
|
|
const int InnerRank = Traits::Rank;
|
|
for( typename Traits::scalar_type &Source : container ) {
|
|
lambda(Source, Seq++, MyIndex, GridTensorIndex );
|
|
// Now increment SubIndex
|
|
for( int i = InnerRank - 1; i != -1 && ++GridTensorIndex[i] == DimGridTensor[i]; i-- )
|
|
GridTensorIndex[i] = 0;
|
|
}
|
|
}
|
|
|
|
// Calls a lamda (passing index and sequence number) for every member of an Eigen::Tensor
|
|
// For efficiency, iteration proceeds in memory order,
|
|
// ... but parameters guaranteed to be the same regardless of memory order
|
|
template <typename ETensor, typename Lambda>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
|
|
for_all( ETensor &ET, Lambda lambda )
|
|
{
|
|
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
|
|
using Index = typename ETensor::Index;
|
|
using Traits = EigenIO::Traits<ETensor>;
|
|
// Check that the number of elements in the container is the product of tensor dimensions
|
|
const Index NumScalars = ET.size();
|
|
assert( NumScalars > 0 && "EigenUtil: tensor has no elements" );
|
|
Index ScalarElementCount{1};
|
|
const int rank{ETensor::NumIndices};
|
|
std::array<Index, rank> DimTensor, MyIndex;
|
|
for(int i = 0; i < rank; i++ ) {
|
|
DimTensor[i] = ET.dimension(i);
|
|
ScalarElementCount *= DimTensor[i];
|
|
MyIndex[i] = 0;
|
|
}
|
|
assert( NumScalars == ScalarElementCount && "EigenUtil: tensor size not product of dimensions" );
|
|
// Save the GridTensor dimensions
|
|
const int InnerRank{Traits::Rank};
|
|
std::array<int, InnerRank> DimGridTensor, GridTensorIndex;
|
|
for(int i = 0; i < InnerRank; i++ ) {
|
|
DimGridTensor[i] = Traits::Dimension(i);
|
|
GridTensorIndex[i] = 0;
|
|
}
|
|
// Now walk the tensor in memory order
|
|
Index Seq = 0;
|
|
Scalar * pScalar = ET.data();
|
|
for( Index j = 0; j < NumScalars; j++ ) {
|
|
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex, DimGridTensor, GridTensorIndex );
|
|
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
|
|
if( ETensor::Options & Eigen::RowMajor ) {
|
|
for( int i = rank - 1; i != -1 && ++MyIndex[i] == DimTensor[i]; i-- )
|
|
MyIndex[i] = 0;
|
|
} else {
|
|
for( int i = 0; i < rank && ++MyIndex[i] == DimTensor[i]; i++ )
|
|
MyIndex[i] = 0;
|
|
Seq = 0;
|
|
for( int i = 0; i < rank; i++ ) {
|
|
Seq *= DimTensor[i];
|
|
Seq += MyIndex[i];
|
|
}
|
|
Seq *= Traits::count;
|
|
}
|
|
pScalar++;
|
|
}
|
|
}
|
|
|
|
// Sequential initialisation of tensors up to specified precision
|
|
// Would have preferred to define template variables for this, but that's c++ 17
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::Traits<ETensor>::is_complex>::type
|
|
SequentialInit( ETensor &ET, typename EigenIO::Traits<ETensor>::scalar_type Inc = 1, unsigned short Precision = 0 )
|
|
{
|
|
using Traits = EigenIO::Traits<ETensor>;
|
|
using scalar_type = typename Traits::scalar_type;
|
|
using Index = typename ETensor::Index;
|
|
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
|
|
const std::array<int, Traits::Rank> &ScalarIndex ) {
|
|
scalar_type x = Inc * static_cast<scalar_type>(n);
|
|
if( Precision ) {
|
|
std::stringstream s;
|
|
s << std::setprecision(Precision) << x;
|
|
s >> x;
|
|
}
|
|
c = x;
|
|
} );
|
|
}
|
|
|
|
template <typename ETensor>
|
|
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::Traits<ETensor>::is_complex>::type
|
|
SequentialInit( ETensor &ET, typename EigenIO::Traits<ETensor>::scalar_type Inc={1,-1}, unsigned short Precision = 0 )
|
|
{
|
|
using Traits = EigenIO::Traits<ETensor>;
|
|
using scalar_type = typename Traits::scalar_type;
|
|
using Index = typename ETensor::Index;
|
|
for_all( ET, [&](scalar_type &c, Index n, const std::array<Index, ETensor::NumIndices> &TensorIndex,
|
|
const std::array<int, Traits::Rank> &ScalarIndex ) {
|
|
auto re = Inc.real();
|
|
auto im = Inc.imag();
|
|
re *= n;
|
|
im *= n;
|
|
if( Precision ) {
|
|
std::stringstream s;
|
|
s << std::setprecision(Precision) << re;
|
|
s >> re;
|
|
s.clear();
|
|
s << im;
|
|
s >> im;
|
|
}
|
|
c = scalar_type(re,im);
|
|
} );
|
|
}
|
|
|
|
// Helper to dump a tensor
|
|
template <typename T>
|
|
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
|
|
dump_tensor(T &t, const char * pName = nullptr)
|
|
{
|
|
using Traits = EigenIO::Traits<T>;
|
|
using scalar_type = typename Traits::scalar_type;
|
|
using Index = typename T::Index;
|
|
const int rank{T::NumIndices};
|
|
const auto &dims = t.dimensions();
|
|
std::cout << "Dumping rank " << rank + Traits::Rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
|
|
if( pName )
|
|
std::cout << pName;
|
|
for( int i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
|
|
for( int i = 0 ; i < Traits::Rank; i++ ) std::cout << "(" << Traits::Dimension(i) << ")";
|
|
std::cout << " in memory order:" << std::endl;
|
|
#ifdef OLD_DEFINITION
|
|
for_all( t, [&](scalar_type &c, Index n, const std::array<Index, rank> &TensorIndex,
|
|
const std::array<int, Traits::Rank> &ScalarIndex ){
|
|
std::cout << " ";
|
|
for( auto dim : TensorIndex )
|
|
std::cout << "[" << dim << "]";
|
|
for( auto dim : ScalarIndex )
|
|
std::cout << "(" << dim << ")";
|
|
std::cout << " = " << c << std::endl;
|
|
} );
|
|
#else
|
|
for( auto it = begin(t); !it.AtEnd(); ++it ) {
|
|
std::cout << " ";
|
|
it.DumpIndex();
|
|
std::cout << " = " << (const typename T::Scalar)(*it) << std::endl;
|
|
}
|
|
#endif
|
|
std::cout << "========================================" << std::endl;
|
|
}
|
|
|
|
template <typename T>
|
|
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
|
|
dump_tensor(T &t, const char * pName = nullptr)
|
|
{
|
|
std::cout << "Dumping non-tensor object ";
|
|
if( pName ) std::cout << pName;
|
|
std::cout << "=" << t;
|
|
}
|
|
}
|
|
#endif
|