mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
809 lines
25 KiB
C++
809 lines
25 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./tests/Test_dwf_hdcr.cc
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Grid/Grid.h>
|
|
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
|
|
//#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
|
|
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
|
|
|
using namespace std;
|
|
using namespace Grid;
|
|
|
|
// TODO
|
|
//
|
|
// Coarse Grid axpby_ssp_pminus // Inherit from spProj5pm
|
|
// Coarse Grid axpby_ssp_pplus
|
|
|
|
template<class Field,class Coeff_t>
|
|
class CayleyBase : public SparseMatrixBase<Field>
|
|
{
|
|
public:
|
|
int Ls;
|
|
// protected:
|
|
RealD mass;
|
|
RealD M5;
|
|
// Save arguments to SetCoefficientsInternal
|
|
Vector<Coeff_t> _gamma;
|
|
RealD _zolo_hi;
|
|
RealD _b;
|
|
RealD _c;
|
|
|
|
// Cayley form Moebius (tanh and zolotarev)
|
|
Vector<Coeff_t> omega;
|
|
Vector<Coeff_t> bs; // S dependent coeffs
|
|
Vector<Coeff_t> cs;
|
|
Vector<Coeff_t> as;
|
|
// For preconditioning Cayley form
|
|
Vector<Coeff_t> bee;
|
|
Vector<Coeff_t> cee;
|
|
Vector<Coeff_t> aee;
|
|
Vector<Coeff_t> beo;
|
|
Vector<Coeff_t> ceo;
|
|
Vector<Coeff_t> aeo;
|
|
// LDU factorisation of the eeoo matrix
|
|
Vector<Coeff_t> lee;
|
|
Vector<Coeff_t> leem;
|
|
Vector<Coeff_t> uee;
|
|
Vector<Coeff_t> ueem;
|
|
Vector<Coeff_t> dee;
|
|
public:
|
|
CayleyBase(RealD _M5, RealD _mass, int _Ls, RealD b_, RealD c_) :
|
|
M5(_M5),
|
|
mass(_mass),
|
|
Ls(_Ls),
|
|
_b(b_),
|
|
_c(c_)
|
|
{
|
|
RealD eps = 1.0;
|
|
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
|
|
this->SetCoefficientsTanh(zdata,1.0,0.0);
|
|
Approx::zolotarev_free(zdata);
|
|
}
|
|
/////////////////////////////////////////////////////////
|
|
// Replicates functionality
|
|
// Use a common base class approach
|
|
/////////////////////////////////////////////////////////
|
|
// Tanh
|
|
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
|
|
{
|
|
Vector<Coeff_t> gamma(this->Ls);
|
|
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
|
|
SetCoefficientsInternal(1.0,gamma,b,c);
|
|
}
|
|
//Zolo
|
|
void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
|
|
{
|
|
Vector<Coeff_t> gamma(this->Ls);
|
|
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
|
|
SetCoefficientsInternal(zolo_hi,gamma,b,c);
|
|
}
|
|
//Zolo
|
|
void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c)
|
|
{
|
|
int Ls=this->Ls;
|
|
|
|
///////////////////////////////////////////////////////////
|
|
// The Cayley coeffs (unprec)
|
|
///////////////////////////////////////////////////////////
|
|
assert(gamma.size()==Ls);
|
|
|
|
omega.resize(Ls);
|
|
bs.resize(Ls);
|
|
cs.resize(Ls);
|
|
as.resize(Ls);
|
|
|
|
double bpc = b+c;
|
|
double bmc = b-c;
|
|
_b = b;
|
|
_c = c;
|
|
_gamma = gamma; // Save the parameters so we can change mass later.
|
|
_zolo_hi= zolo_hi;
|
|
for(int i=0; i < Ls; i++){
|
|
as[i] = 1.0;
|
|
omega[i] = _gamma[i]*_zolo_hi; //NB reciprocal relative to Chroma NEF code
|
|
assert(omega[i]!=Coeff_t(0.0));
|
|
bs[i] = 0.5*(bpc/omega[i] + bmc);
|
|
cs[i] = 0.5*(bpc/omega[i] - bmc);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////
|
|
// Constants for the preconditioned matrix Cayley form
|
|
////////////////////////////////////////////////////////
|
|
bee.resize(Ls);
|
|
cee.resize(Ls);
|
|
beo.resize(Ls);
|
|
ceo.resize(Ls);
|
|
|
|
for(int i=0;i<Ls;i++){
|
|
bee[i]=as[i]*(bs[i]*(4.0-this->M5) +1.0);
|
|
assert(bee[i]!=Coeff_t(0.0));
|
|
cee[i]=as[i]*(1.0-cs[i]*(4.0-this->M5));
|
|
beo[i]=as[i]*bs[i];
|
|
ceo[i]=-as[i]*cs[i];
|
|
}
|
|
aee.resize(Ls);
|
|
aeo.resize(Ls);
|
|
for(int i=0;i<Ls;i++){
|
|
aee[i]=cee[i];
|
|
aeo[i]=ceo[i];
|
|
}
|
|
|
|
//////////////////////////////////////////
|
|
// LDU decomposition of eeoo
|
|
//////////////////////////////////////////
|
|
dee.resize(Ls);
|
|
lee.resize(Ls);
|
|
leem.resize(Ls);
|
|
uee.resize(Ls);
|
|
ueem.resize(Ls);
|
|
|
|
for(int i=0;i<Ls;i++){
|
|
|
|
dee[i] = bee[i];
|
|
|
|
if ( i < Ls-1 ) {
|
|
|
|
assert(bee[i]!=Coeff_t(0.0));
|
|
assert(bee[0]!=Coeff_t(0.0));
|
|
|
|
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
|
|
|
|
leem[i]=mass*cee[Ls-1]/bee[0];
|
|
for(int j=0;j<i;j++) {
|
|
assert(bee[j+1]!=Coeff_t(0.0));
|
|
leem[i]*= aee[j]/bee[j+1];
|
|
}
|
|
|
|
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
|
|
|
|
ueem[i]=mass;
|
|
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
|
|
ueem[i]*= aee[0]/bee[0];
|
|
|
|
} else {
|
|
lee[i] =0.0;
|
|
leem[i]=0.0;
|
|
uee[i] =0.0;
|
|
ueem[i]=0.0;
|
|
}
|
|
}
|
|
|
|
{
|
|
Coeff_t delta_d=mass*cee[Ls-1];
|
|
for(int j=0;j<Ls-1;j++) {
|
|
assert(bee[j] != Coeff_t(0.0));
|
|
delta_d *= cee[j]/bee[j];
|
|
}
|
|
dee[Ls-1] += delta_d;
|
|
}
|
|
};
|
|
|
|
//////////////////////////////
|
|
// M and Mdag
|
|
//////////////////////////////
|
|
virtual void Mdiag (const Field &in, Field &out) {}
|
|
virtual void Mdir (const Field &in, Field &out,int dir, int disp){};
|
|
virtual void MdirAll (const Field &in, std::vector<Field> &out){};
|
|
virtual void DW (const Field &psi, Field &chi)=0;
|
|
virtual void DWDag (const Field &psi, Field &chi)=0;
|
|
|
|
void M (const Field &psi, Field &chi)
|
|
{
|
|
Field Din(psi.Grid());
|
|
Meooe5D(psi,Din);
|
|
DW(Din,chi);
|
|
axpby(chi,1.0,1.0,chi,psi);
|
|
M5D(psi,chi);
|
|
}
|
|
void Mdag (const Field &psi, Field &chi)
|
|
{
|
|
Field Din(psi.Grid());
|
|
DWDag(psi,Din);
|
|
MeooeDag5D(Din,chi);
|
|
M5Ddag(psi,chi);
|
|
axpby (chi,1.0,1.0,chi,psi);
|
|
}
|
|
/////////////////////////////////
|
|
// P and Pdag - might be needed
|
|
/////////////////////////////////
|
|
void P(const Field &psi, Field &chi)
|
|
{
|
|
int Ls= this->Ls;
|
|
chi=Zero();
|
|
for(int s=0;s<Ls;s++){
|
|
axpby_ssp_pminus(chi,1.0,chi,1.0,psi,s,s);
|
|
axpby_ssp_pplus (chi,1.0,chi,1.0,psi,s,(s+1)%Ls);
|
|
}
|
|
}
|
|
void Pdag(const Field &psi, Field &chi)
|
|
{
|
|
int Ls= this->Ls;
|
|
chi=Zero();
|
|
for(int s=0;s<Ls;s++){
|
|
axpby_ssp_pminus(chi,1.0,chi,1.0,psi,s,s);
|
|
axpby_ssp_pplus (chi,1.0,chi,1.0,psi,s,(s-1+Ls)%Ls);
|
|
}
|
|
}
|
|
////////////////////////////////////////////////////////
|
|
// Depends: Dw, M5D, M5Ddag, Meooe5D, MeooeDag5D,
|
|
////////////////////////////////////////////////////////
|
|
void M5D (const Field &psi, Field &chi)
|
|
{
|
|
int Ls=this->Ls;
|
|
Vector<Coeff_t> diag (Ls,1.0);
|
|
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass;
|
|
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass;
|
|
M5D(psi,chi,chi,lower,diag,upper);
|
|
}
|
|
void M5Ddag (const Field &psi, Field &chi)
|
|
{
|
|
int Ls=this->Ls;
|
|
Vector<Coeff_t> diag(Ls,1.0);
|
|
Vector<Coeff_t> upper(Ls,-1.0);
|
|
Vector<Coeff_t> lower(Ls,-1.0);
|
|
upper[Ls-1]=-mass*upper[Ls-1];
|
|
lower[0] =-mass*lower[0];
|
|
M5Ddag(psi,chi,chi,lower,diag,upper);
|
|
}
|
|
void Meooe5D (const Field &psi, Field &Din)
|
|
{
|
|
int Ls=this->Ls;
|
|
Vector<Coeff_t> diag = bs;
|
|
Vector<Coeff_t> upper= cs;
|
|
Vector<Coeff_t> lower= cs;
|
|
upper[Ls-1]=-mass*upper[Ls-1];
|
|
lower[0] =-mass*lower[0];
|
|
M5D(psi,psi,Din,lower,diag,upper);
|
|
}
|
|
void MeooeDag5D (const Field &psi, Field &Din)
|
|
{
|
|
int Ls=this->Ls;
|
|
Vector<Coeff_t> diag =bs;
|
|
Vector<Coeff_t> upper=cs;
|
|
Vector<Coeff_t> lower=cs;
|
|
|
|
for (int s=0;s<Ls;s++){
|
|
if ( s== 0 ) {
|
|
upper[s] = cs[s+1];
|
|
lower[s] =-mass*cs[Ls-1];
|
|
} else if ( s==(Ls-1) ) {
|
|
upper[s] =-mass*cs[0];
|
|
lower[s] = cs[s-1];
|
|
} else {
|
|
upper[s] = cs[s+1];
|
|
lower[s] = cs[s-1];
|
|
}
|
|
upper[s] = conjugate(upper[s]);
|
|
lower[s] = conjugate(lower[s]);
|
|
diag[s] = conjugate(diag[s]);
|
|
}
|
|
M5Ddag(psi,psi,Din,lower,diag,upper);
|
|
}
|
|
|
|
void M5D(const Field &psi_i,
|
|
const Field &phi_i,
|
|
Field &chi_i,
|
|
Vector<Coeff_t> &lower,
|
|
Vector<Coeff_t> &diag,
|
|
Vector<Coeff_t> &upper)
|
|
{
|
|
chi_i.Checkerboard()=psi_i.Checkerboard();
|
|
GridBase *grid=psi_i.Grid();
|
|
autoView(psi , psi_i,AcceleratorRead);
|
|
autoView(phi , phi_i,AcceleratorRead);
|
|
autoView(chi , chi_i,AcceleratorWrite);
|
|
assert(phi.Checkerboard() == psi.Checkerboard());
|
|
|
|
auto pdiag = &diag[0];
|
|
auto pupper = &upper[0];
|
|
auto plower = &lower[0];
|
|
|
|
int Ls =this->Ls;
|
|
|
|
// 10 = 3 complex mult + 2 complex add
|
|
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
|
|
uint64_t nloop = grid->oSites()/Ls;
|
|
|
|
const int Nsimd = Field::vector_type::Nsimd();
|
|
accelerator_for(sss,nloop,Nsimd,{
|
|
uint64_t ss= sss*Ls;
|
|
typedef decltype(coalescedRead(psi[0])) spinor;
|
|
spinor tmp1, tmp2;
|
|
for(int s=0;s<Ls;s++){
|
|
uint64_t idx_u = ss+((s+1)%Ls);
|
|
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
|
spProj5m(tmp1,psi(idx_u)); // Need routines for this
|
|
spProj5p(tmp2,psi(idx_l));
|
|
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
|
}
|
|
});
|
|
}
|
|
void M5Ddag(const Field &psi_i,
|
|
const Field &phi_i,
|
|
Field &chi_i,
|
|
Vector<Coeff_t> &lower,
|
|
Vector<Coeff_t> &diag,
|
|
Vector<Coeff_t> &upper)
|
|
{
|
|
chi_i.Checkerboard()=psi_i.Checkerboard();
|
|
GridBase *grid=psi_i.Grid();
|
|
autoView(psi , psi_i,AcceleratorRead);
|
|
autoView(phi , phi_i,AcceleratorRead);
|
|
autoView(chi , chi_i,AcceleratorWrite);
|
|
assert(phi.Checkerboard() == psi.Checkerboard());
|
|
|
|
auto pdiag = &diag[0];
|
|
auto pupper = &upper[0];
|
|
auto plower = &lower[0];
|
|
|
|
int Ls=this->Ls;
|
|
|
|
uint64_t nloop = grid->oSites()/Ls;
|
|
const int Nsimd = Field::vector_type::Nsimd();
|
|
accelerator_for(sss,nloop,Nsimd,{
|
|
uint64_t ss=sss*Ls;
|
|
typedef decltype(coalescedRead(psi[0])) spinor;
|
|
spinor tmp1,tmp2;
|
|
for(int s=0;s<Ls;s++){
|
|
uint64_t idx_u = ss+((s+1)%Ls);
|
|
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
|
spProj5p(tmp1,psi(idx_u));
|
|
spProj5m(tmp2,psi(idx_l));
|
|
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
|
}
|
|
});
|
|
}
|
|
};
|
|
|
|
template<class Fobj,class CComplex,int nbasis>
|
|
class CoarseCayleyFermion : public CayleyBase< Lattice<iVector<CComplex,nbasis > > , ComplexD >
|
|
{
|
|
public:
|
|
typedef iVector<CComplex,nbasis > siteVector;
|
|
typedef Lattice<CComplex > CoarseComplexField;
|
|
typedef Lattice<siteVector> CoarseVector;
|
|
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
|
typedef iMatrix<CComplex,nbasis > Cobj;
|
|
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
|
typedef Lattice<Fobj > FineField;
|
|
|
|
// Similar to the CoarseOperator but add 5D support.
|
|
Geometry geom;
|
|
GridBase *Coarse5D;
|
|
GridBase *Coarse4D;
|
|
CartesianStencil<siteVector,siteVector,int> Stencil;
|
|
CoarsenedMatrix<Fobj,CComplex,nbasis> &Dw;
|
|
|
|
GridBase * Grid(void) { return Coarse5D; }; // this is all the linalg routines need to know
|
|
|
|
CoarseCayleyFermion(GridCartesian &CoarseGrid4,
|
|
GridCartesian &CoarseGrid5,
|
|
CoarsenedMatrix<Fobj,CComplex,nbasis> &_Dw,
|
|
RealD M5, RealD mass, int Ls, RealD b, RealD c) :
|
|
CayleyBase<CoarseVector,ComplexD>(M5,mass,Ls,b,c),
|
|
Coarse4D(&CoarseGrid4),
|
|
Coarse5D(&CoarseGrid5),
|
|
Dw(_Dw),
|
|
geom(CoarseGrid5._ndimension),
|
|
Stencil( &CoarseGrid5,geom.npoint,Even,geom.directions,geom.displacements,0)
|
|
{
|
|
};
|
|
|
|
public:
|
|
|
|
////////////////////////////////////////////////
|
|
// This is specific to Coarse Grid Cayley
|
|
////////////////////////////////////////////////
|
|
void DW (const CoarseVector &in, CoarseVector &out)
|
|
{
|
|
conformable(Coarse5D,in.Grid());
|
|
conformable(in.Grid(),out.Grid());
|
|
|
|
SimpleCompressor<siteVector> compressor;
|
|
|
|
Stencil.HaloExchange(in,compressor);
|
|
autoView( in_v , in, AcceleratorRead);
|
|
autoView( out_v , out, AcceleratorWrite);
|
|
typedef LatticeView<Cobj> Aview;
|
|
|
|
std::cout << "Dw"<<std::endl;
|
|
Vector<Aview> AcceleratorViewContainer;
|
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(Dw.A[p].View(AcceleratorRead));
|
|
Aview *Aview_p = & AcceleratorViewContainer[0];
|
|
|
|
const int Nsimd = CComplex::Nsimd();
|
|
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
|
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
|
|
|
int osites=Grid()->oSites();
|
|
|
|
// Ls loop for2D
|
|
int Ls=this->Ls;
|
|
std::cout << "Dw for2d"<<std::endl;
|
|
accelerator_for2d(sF, osites*Ls, b, nbasis, Nsimd, {
|
|
|
|
int sU = sF/Ls;
|
|
int s = sF%Ls;
|
|
calcComplex res = Zero();
|
|
calcVector nbr;
|
|
int ptype;
|
|
StencilEntry *SE;
|
|
|
|
for(int point=0;point<geom.npoint;point++){
|
|
|
|
SE=Stencil.GetEntry(ptype,point,sF);
|
|
|
|
if(SE->_is_local) {
|
|
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
|
} else {
|
|
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
|
|
}
|
|
acceleratorSynchronise();
|
|
|
|
for(int bb=0;bb<nbasis;bb++) {
|
|
res = res + coalescedRead(Aview_p[point][sU](b,bb))*nbr(bb);
|
|
}
|
|
}
|
|
coalescedWrite(out_v[sF](b),res);
|
|
});
|
|
exit(0);
|
|
std::cout << "Dw closing"<<std::endl;
|
|
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
|
};
|
|
|
|
void DWDag (const CoarseVector &in, CoarseVector &out)
|
|
{
|
|
// Inefficient G5 hermitian use
|
|
CoarseVector tmp(Grid());
|
|
G5C(tmp, in); //There has to be a better way
|
|
DW(tmp, out);
|
|
G5C(out, out);
|
|
};
|
|
|
|
};
|
|
|
|
template<class Field> class SolverWrapper : public LinearFunction<Field> {
|
|
private:
|
|
LinearOperatorBase<Field> & _Matrix;
|
|
OperatorFunction<Field> & _Solver;
|
|
LinearFunction<Field> & _Guess;
|
|
public:
|
|
|
|
/////////////////////////////////////////////////////
|
|
// Wrap the usual normal equations trick
|
|
/////////////////////////////////////////////////////
|
|
SolverWrapper(LinearOperatorBase<Field> &Matrix,
|
|
OperatorFunction<Field> &Solver,
|
|
LinearFunction<Field> &Guess)
|
|
: _Matrix(Matrix), _Solver(Solver), _Guess(Guess) {};
|
|
|
|
void operator() (const Field &in, Field &out){
|
|
|
|
_Guess(in,out);
|
|
_Solver(_Matrix,in,out); // Mdag M out = Mdag in
|
|
|
|
}
|
|
};
|
|
|
|
|
|
// Must use a non-hermitian solver
|
|
template<class Matrix,class Field>
|
|
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
Matrix &_PV;
|
|
public:
|
|
PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
|
|
|
|
void OpDiag (const Field &in, Field &out) {
|
|
assert(0);
|
|
}
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
assert(0);
|
|
}
|
|
void OpDirAll (const Field &in, std::vector<Field> &out){
|
|
assert(0);
|
|
};
|
|
void Op (const Field &in, Field &out){
|
|
Field tmp(in.Grid());
|
|
_Mat.M(in,tmp);
|
|
_PV.Mdag(tmp,out);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){
|
|
Field tmp(in.Grid());
|
|
_PV.M(tmp,out);
|
|
_Mat.Mdag(in,tmp);
|
|
}
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
assert(0);
|
|
}
|
|
void HermOp(const Field &in, Field &out){
|
|
assert(0);
|
|
}
|
|
};
|
|
|
|
|
|
RealD InverseApproximation(RealD x){
|
|
return 1.0/x;
|
|
}
|
|
|
|
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
|
|
{
|
|
public:
|
|
typedef LinearOperatorBase<Field> FineOperator;
|
|
Matrix & _SmootherMatrix;
|
|
FineOperator & _SmootherOperator;
|
|
|
|
Chebyshev<Field> Cheby;
|
|
|
|
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
|
|
_SmootherOperator(SmootherOperator),
|
|
_SmootherMatrix(SmootherMatrix),
|
|
Cheby(_lo,_hi,_ord,InverseApproximation)
|
|
{};
|
|
|
|
void operator() (const Field &in, Field &out)
|
|
{
|
|
Field tmp(in.Grid());
|
|
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
|
|
_SmootherOperator.AdjOp(in,tmp);
|
|
Cheby(MdagMOp,tmp,out);
|
|
}
|
|
};
|
|
|
|
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
|
|
{
|
|
public:
|
|
typedef LinearOperatorBase<Field> FineOperator;
|
|
Matrix & SmootherMatrix;
|
|
FineOperator & SmootherOperator;
|
|
RealD tol;
|
|
RealD shift;
|
|
int maxit;
|
|
|
|
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
|
|
shift(_shift),tol(_tol),maxit(_maxit),
|
|
SmootherOperator(_SmootherOperator),
|
|
SmootherMatrix(_SmootherMatrix)
|
|
{};
|
|
|
|
void operator() (const Field &in, Field &out)
|
|
{
|
|
ZeroGuesser<Field> Guess;
|
|
ConjugateGradient<Field> CG(tol,maxit,false);
|
|
|
|
Field src(in.Grid());
|
|
|
|
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
|
|
SmootherOperator.AdjOp(in,src);
|
|
Guess(src,out);
|
|
CG(MdagMOp,src,out);
|
|
}
|
|
};
|
|
|
|
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
|
|
|
|
template<class Fobj,class CComplex,int nbasis, class CoarseSolver>
|
|
class HDCRPreconditioner : public LinearFunction< Lattice<Fobj> > {
|
|
public:
|
|
|
|
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
|
|
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
|
|
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
|
|
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
|
|
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
|
|
typedef LinearOperatorBase<FineField> FineOperator;
|
|
typedef LinearFunction <FineField> FineSmoother;
|
|
|
|
Aggregates & _Aggregates;
|
|
FineOperator & _FineOperator;
|
|
FineSmoother & _Smoother;
|
|
CoarseSolver & _CoarseSolve;
|
|
|
|
int level; void Level(int lv) {level = lv; };
|
|
|
|
|
|
HDCRPreconditioner(Aggregates &Agg,
|
|
FineOperator &Fine,
|
|
FineSmoother &Smoother,
|
|
CoarseSolver &CoarseSolve_)
|
|
: _Aggregates(Agg),
|
|
_FineOperator(Fine),
|
|
_Smoother(Smoother),
|
|
_CoarseSolve(CoarseSolve_),
|
|
level(1) { }
|
|
|
|
virtual void operator()(const FineField &in, FineField & out)
|
|
{
|
|
auto CoarseGrid = _Aggregates.CoarseGrid;
|
|
CoarseVector Csrc(CoarseGrid);
|
|
CoarseVector Csol(CoarseGrid);
|
|
FineField vec1(in.Grid());
|
|
FineField vec2(in.Grid());
|
|
|
|
double t;
|
|
// Fine Smoother
|
|
t=-usecond();
|
|
_Smoother(in,out);
|
|
t+=usecond();
|
|
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
|
|
|
|
// Update the residual
|
|
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
|
|
|
|
// Fine to Coarse
|
|
t=-usecond();
|
|
_Aggregates.ProjectToSubspace (Csrc,vec1);
|
|
t+=usecond();
|
|
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
|
|
|
|
// Coarse correction
|
|
t=-usecond();
|
|
_CoarseSolve(Csrc,Csol);
|
|
t+=usecond();
|
|
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
|
|
|
|
// Coarse to Fine
|
|
t=-usecond();
|
|
_Aggregates.PromoteFromSubspace(Csol,vec1);
|
|
add(out,out,vec1);
|
|
t+=usecond();
|
|
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
|
|
|
|
// Residual
|
|
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
|
|
|
|
// Fine Smoother
|
|
t=-usecond();
|
|
_Smoother(vec1,vec2);
|
|
t+=usecond();
|
|
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
|
|
|
|
add( out,out,vec2);
|
|
}
|
|
};
|
|
|
|
int main (int argc, char ** argv)
|
|
{
|
|
Grid_init(&argc,&argv);
|
|
|
|
const int Ls=16;
|
|
|
|
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
|
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
|
|
|
|
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
|
|
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
|
|
|
|
///////////////////////////////////////////////////
|
|
// Construct a coarsened grid; utility for this?
|
|
///////////////////////////////////////////////////
|
|
std::vector<int> block ({2,2,2,2});
|
|
const int nbasis= 8;
|
|
|
|
auto clatt = GridDefaultLatt();
|
|
for(int d=0;d<clatt.size();d++){
|
|
clatt[d] = clatt[d]/block[d];
|
|
}
|
|
|
|
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
|
|
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(Ls,Coarse4d);
|
|
|
|
std::vector<int> seeds({1,2,3,4});
|
|
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds);
|
|
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds);
|
|
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(seeds);
|
|
|
|
LatticeGaugeField Umu(UGrid);
|
|
FieldMetaData header;
|
|
std::string file("./ckpoint_lat.4000");
|
|
NerscIO::readConfiguration(Umu,header,file);
|
|
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
RealD mass=0.001;
|
|
RealD M5=1.8;
|
|
WilsonFermionR Dw(Umu,*UGrid,*UrbGrid,-M5);
|
|
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
|
DomainWallFermionR Dpv (Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
|
|
|
|
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
|
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
|
|
typedef CoarseOperator::CoarseVector CoarseVector;
|
|
typedef CoarseOperator::siteVector siteVector;
|
|
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
MdagMLinearOperator<WilsonFermionR,LatticeFermion> SubspaceOp(Dw);
|
|
|
|
Subspace Aggregates4D(Coarse4d,UGrid,0);
|
|
Subspace Aggregates5D(Coarse5d,FGrid,0);
|
|
|
|
assert ( (nbasis & 0x1)==0);
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << " 4D subspace build " <<std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
int nb=nbasis/2;
|
|
Gamma g5(Gamma::Algebra::Gamma5);
|
|
Aggregates4D.CreateSubspaceChebyshev(RNG4,SubspaceOp,nb,60.0,0.02,500,100,100,0.0);
|
|
for(int n=0;n<nb;n++){
|
|
Aggregates4D.subspace[n+nb]= Aggregates4D.subspace[n] - g5 * Aggregates4D.subspace[n];
|
|
Aggregates4D.subspace[n] = Aggregates4D.subspace[n] + g5 * Aggregates4D.subspace[n];
|
|
}
|
|
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << " Coarsen the operator " <<std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op4;
|
|
typedef CoarseCayleyFermion<vSpinColourVector,vTComplex,nbasis> Level1Op5;
|
|
|
|
Level1Op4 c_Dw (*Coarse4d,0);
|
|
|
|
std::cout<<GridLogMessage << " Coarsening Hw / Dw operator " <<std::endl;
|
|
NonHermitianLinearOperator<WilsonFermionR,LatticeFermion> LinOpDw(Dw);
|
|
std::cout<<GridLogMessage << " Coarsening Hw linop " <<std::endl;
|
|
c_Dw.CoarsenOperator(UGrid,LinOpDw,Aggregates4D);
|
|
std::cout<<GridLogMessage << " Coarsened Hw / Dw operator " <<std::endl;
|
|
Level1Op5 c_Dwf (*Coarse4d,*Coarse5d,c_Dw,M5, mass, Ls, 1.0,0.0);
|
|
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << "Coarse CG unprec "<< std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
|
|
CoarseVector c_src(Coarse5d); c_src=1.0;
|
|
CoarseVector c_res(Coarse5d);
|
|
|
|
RealD tol=1.0e-8;
|
|
int MaxIt = 10000;
|
|
|
|
MdagMLinearOperator<Level1Op5,CoarseVector> CoarseMdagM(c_Dwf);
|
|
ConjugateGradient<CoarseVector> CoarseCG(tol,MaxIt);
|
|
// BiCGSTAB<CoarseVector> CoarseBiCGSTAB(tol,MaxIt);
|
|
|
|
c_res=Zero();
|
|
CoarseCG(CoarseMdagM,c_src,c_res);
|
|
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << " Solve " <<std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
|
|
LatticeFermion f_src(FGrid); f_src=1.0;
|
|
LatticeFermion f_res(FGrid);
|
|
|
|
LatticeFermion src(FGrid); gaussian(RNG5,src);
|
|
LatticeFermion result(FGrid);
|
|
|
|
|
|
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
std::cout<<GridLogMessage << "Done "<< std::endl;
|
|
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
|
Grid_finalize();
|
|
|
|
}
|