1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00
Grid/tests/lanczos/Test_evec_compression.cc
Christopher Kelly 33e4a0caee Imported changes from feature/gparity_HMC branch:
Rework of WilsonFlow class
		Fixed logic error in smear method where the step index was initialized to 1 rather than 0, resulting in the logged output value of tau being too large by epsilon
		Previously smear_adaptive would maintain the current value of tau as a class member variable whereas smear would compute it separately; now both methods maintain the current value internally and it is updated by the evolve_step routines. Both evolve methods are now const.
		smear_adaptive now also maintains the current value of epsilon internally, allowing it to be a const method and also allowing the same class instance to be reused without needing to be reset
		Replaced the fixed evaluation of the plaquette energy density and plaquette topological charge during the smearing with a highly flexible general strategy where the user can add arbitrary measurements as functional objects that are evaluated at an arbitrary frequency
	        By default the same plaquette-based measurements are performed, but additional example functions are provided where the smearing is performed with different choices of measurement that are returned as an array for further processing
		Added a method to compute the energy density using the Cloverleaf approach which has smaller discretization errors
	Added a new tensor utility operation, copyLane, which allows for the copying of a single SIMD lane between two instances of the same tensor type but potentially different precisions
	To LocalCoherenceLanczos, added the option to compute the high/low eval of the fine operator on every restart to aid in tuning the Chebyshev
	Added Test_field_array_io which demonstrates and tests a single-file write of an arbitrary array of fields
	Added Test_evec_compression which generates evecs using Lanczos and attempts to compress them using the local coherence technique
	Added Test_compressed_lanczos_gparity which demonstrates the local coherence Lanczos for G-parity BCs
	Added HMC main programs for the 40ID and 48ID G-parity lattices
2022-07-01 14:12:12 -04:00

583 lines
22 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_evec_compression.cc
Copyright (C) 2017
Author: Christopher Kelly <ckelly@bnl.gov>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/*
*
* This test generates eigenvectors using the Lanczos algorithm then attempts to use local coherence compression
* to express those vectors in terms of a basis formed from a subset. This test is useful for finding the optimal
* blocking and basis size for performing a Local Coherence Lanczos
*/
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
using namespace std;
using namespace Grid;
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
template<typename Gimpl>
void readConfiguration(LatticeGaugeFieldD &U,
const std::string &config,
bool is_cps_cfg = false){
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
typedef GaugeStatistics<Gimpl> GaugeStats;
FieldMetaData header;
NerscIO::readConfiguration<GaugeStats>(U, header, config);
if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
}
//Lanczos parameters in CPS conventions
struct CPSLanczosParams : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
RealD, alpha,
RealD, beta,
int, ch_ord,
int, N_use,
int, N_get,
int, N_true_get,
RealD, stop_rsd,
int, maxits);
//Translations
ChebyParams getChebyParams() const{
ChebyParams out;
out.alpha = beta*beta; //aka lo
out.beta = alpha*alpha; //aka hi
out.Npoly = ch_ord+1;
return out;
}
int Nstop() const{ return N_true_get; }
int Nm() const{ return N_use; }
int Nk() const{ return N_get; }
};
template<class Fobj,class CComplex,int nbasis>
class LocalCoherenceCompressor{
public:
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
void compress(std::vector<FineField> &basis,
std::vector<CoarseField> &compressed_evecs,
const std::vector<FineField> &evecs_in,
GridBase *FineGrid,
GridBase *CoarseGrid){
int nevecs = evecs_in.size();
assert(nevecs > nbasis);
//Construct the basis
basis.resize(nbasis, FineGrid);
for(int b=0;b<nbasis;b++) basis[b] = evecs_in[b];
//Block othornormalize basis
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,basis);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
blockOrthogonalise(InnerProd,basis);
//The coarse grid representation is the field of vectors of block inner products
std::cout << GridLogMessage << "Compressing eigevectors" << std::endl;
compressed_evecs.resize(nevecs, CoarseGrid);
for(int i=0;i<nevecs;i++) blockProject(compressed_evecs[i], evecs_in[i], basis);
std::cout << GridLogMessage << "Compression complete" << std::endl;
}
void uncompress(FineField &evec, const int i, const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs) const{
blockPromote(compressed_evecs[i],evec,basis);
}
//Test uncompressed eigenvectors of Linop.HermOp to precision 'base_tolerance' for i<nbasis and 'base_tolerance*relax' for i>=nbasis
//Because the uncompressed evec has a lot of high mode noise (unimportant for deflation) we apply a smoother before testing.
//The Chebyshev used by the Lanczos should be sufficient as a smoother
bool testCompression(LinearOperatorBase<FineField> &Linop, OperatorFunction<FineField> &smoother,
const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<RealD> &evals,
const RealD base_tolerance, const RealD relax){
std::cout << GridLogMessage << "Testing quality of uncompressed evecs (after smoothing)" << std::endl;
GridBase* FineGrid = basis[0].Grid();
GridBase* CoarseGrid = compressed_evecs[0].Grid();
bool fail = false;
FineField evec(FineGrid), Mevec(FineGrid), evec_sm(FineGrid);
for(int i=0;i<compressed_evecs.size();i++){
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
uncompress(evec, i, basis, compressed_evecs);
std::cout << GridLogMessage << "Smoothing evec " << i << std::endl;
smoother(Linop, evec, evec_sm);
std::cout << GridLogMessage << "Computing residual for evec " << i << std::endl;
std::cout << GridLogMessage << "Linop" << std::endl;
Linop.HermOp(evec_sm, Mevec);
std::cout << GridLogMessage << "Linalg" << std::endl;
Mevec = Mevec - evals[i]*evec_sm;
std::cout << GridLogMessage << "Resid" << std::endl;
RealD tol = base_tolerance * (i<nbasis ? 1. : relax);
RealD res = sqrt(norm2(Mevec));
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << " tol " << tol << std::endl;
if(res > tol) fail = true;
}
return fail;
}
//Compare uncompressed evecs to original evecs
void compareEvecs(const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<FineField> &orig_evecs){
std::cout << GridLogMessage << "Comparing uncompressed evecs to original evecs" << std::endl;
GridBase* FineGrid = basis[0].Grid();
GridBase* CoarseGrid = compressed_evecs[0].Grid();
FineField evec(FineGrid), diff(FineGrid);
for(int i=0;i<compressed_evecs.size();i++){
std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
uncompress(evec, i, basis, compressed_evecs);
diff = orig_evecs[i] - evec;
RealD res = sqrt(norm2(diff));
std::cout << GridLogMessage << "Evec idx " << i << " res " << res << std::endl;
}
}
};
template<class Fobj,class CComplex,int nbasis>
void compareBlockPromoteTimings(const std::vector<Lattice<Fobj> > &basis, const std::vector<Lattice<iVector<CComplex,nbasis > > > &compressed_evecs){
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef Lattice<Fobj> FineField;
GridStopWatch timer;
GridBase* FineGrid = basis[0].Grid();
GridBase* CoarseGrid = compressed_evecs[0].Grid();
FineField v1(FineGrid), v2(FineGrid);
//Start with a cold start
for(int i=0;i<basis.size();i++){
autoView( b_ , basis[i], CpuWrite);
}
for(int i=0;i<compressed_evecs.size();i++){
autoView( b_ , compressed_evecs[i], CpuWrite);
}
{
autoView( b_, v1, CpuWrite );
}
timer.Start();
blockPromote(compressed_evecs[0],v1,basis);
timer.Stop();
std::cout << GridLogMessage << "Time for cold blockPromote v1 " << timer.Elapsed() << std::endl;
//Test to ensure it is actually doing a cold start by repeating
for(int i=0;i<basis.size();i++){
autoView( b_ , basis[i], CpuWrite);
}
for(int i=0;i<compressed_evecs.size();i++){
autoView( b_ , compressed_evecs[i], CpuWrite);
}
{
autoView( b_, v1, CpuWrite );
}
timer.Reset();
timer.Start();
blockPromote(compressed_evecs[0],v1,basis);
timer.Stop();
std::cout << GridLogMessage << "Time for cold blockPromote v1 repeat (should be the same as above) " << timer.Elapsed() << std::endl;
}
struct Args{
int Ls;
RealD mass;
RealD M5;
bool is_cps_cfg;
RealD mobius_scale; //b+c
CPSLanczosParams fine;
double coarse_relax_tol;
std::vector<int> blockSize;
std::vector<int> GparityDirs;
bool write_fine;
std::string write_fine_file;
bool read_fine;
std::string read_fine_file;
int basis_size;
Args(){
blockSize = {2,2,2,2,2};
GparityDirs = {1,1,1}; //1 for each GP direction
Ls = 12;
mass = 0.01;
M5 = 1.8;
is_cps_cfg = false;
mobius_scale = 2;
fine.alpha = 2;
fine.beta = 0.1;
fine.ch_ord = 100;
fine.N_use = 70;
fine.N_get = 60;
fine.N_true_get = 60;
fine.stop_rsd = 1e-8;
fine.maxits = 10000;
coarse_relax_tol = 1e5;
write_fine = false;
read_fine = false;
basis_size = 100;
}
};
GparityWilsonImplD::ImplParams setupGparityParams(const std::vector<int> &GparityDirs){
//Setup G-parity BCs
assert(Nd == 4);
std::vector<int> dirs4(4);
for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
dirs4[3] = 0; //periodic gauge BC in time
std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
ConjugateGimplD::setDirections(dirs4); //gauge BC
GparityWilsonImplD::ImplParams Params;
for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
Params.twists[Nd-1] = 1; //APBC in time direction
std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
return Params;
}
WilsonImplD::ImplParams setupParams(){
WilsonImplD::ImplParams Params;
Complex one(1.0);
Complex mone(-1.0);
for(int i=0;i<Nd-1;i++) Params.boundary_phases[i] = one;
Params.boundary_phases[Nd-1] = mone;
return Params;
}
template<int nbasis, typename ActionType>
void run_b(ActionType &action, const std::string &config, const Args &args){
//Fine grids
GridCartesian * UGrid = (GridCartesian*)action.GaugeGrid();
GridRedBlackCartesian * UrbGrid = (GridRedBlackCartesian*)action.GaugeRedBlackGrid();
GridCartesian * FGrid = (GridCartesian*)action.FermionGrid();
GridRedBlackCartesian * FrbGrid = (GridRedBlackCartesian*)action.FermionRedBlackGrid();
//Setup the coarse grids
auto fineLatt = GridDefaultLatt();
Coordinate coarseLatt(4);
for (int d=0;d<4;d++){
coarseLatt[d] = fineLatt[d]/args.blockSize[d]; assert(coarseLatt[d]*args.blockSize[d]==fineLatt[d]);
}
std::cout << GridLogMessage<< " 5d coarse lattice is ";
for (int i=0;i<4;i++){
std::cout << coarseLatt[i]<<"x";
}
int cLs = args.Ls/args.blockSize[4]; assert(cLs*args.blockSize[4]==args.Ls);
std::cout << cLs<<std::endl;
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
typedef vTComplex CComplex;
typedef iVector<CComplex,nbasis > CoarseSiteVector;
typedef Lattice<CComplex> CoarseScalar;
typedef Lattice<CoarseSiteVector> CoarseField;
typedef typename ActionType::FermionField FermionField;
SchurDiagTwoOperator<ActionType,FermionField> SchurOp(action);
typedef typename ActionType::SiteSpinor SiteSpinor;
const CPSLanczosParams &fine = args.fine;
//Do the fine Lanczos
std::vector<RealD> evals;
std::vector<FermionField> evecs;
if(args.read_fine){
evals.resize(fine.N_true_get);
evecs.resize(fine.N_true_get, FrbGrid);
std::string evals_file = args.read_fine_file + "_evals.xml";
std::string evecs_file = args.read_fine_file + "_evecs.scidac";
std::cout << GridLogIRL<< "Reading evals from "<<evals_file<<std::endl;
XmlReader RDx(evals_file);
read(RDx,"evals",evals);
assert(evals.size()==fine.N_true_get);
std::cout << GridLogIRL<< "Reading evecs from "<<evecs_file<<std::endl;
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(evecs_file);
for(int k=0;k<fine.N_true_get;k++) {
evecs[k].Checkerboard()=Odd;
RD.readScidacFieldRecord(evecs[k],record);
}
RD.close();
}else{
int Nstop = fine.Nstop(); //==N_true_get
int Nm = fine.Nm();
int Nk = fine.Nk();
RealD resid = fine.stop_rsd;
int MaxIt = fine.maxits;
assert(nbasis<=Nm);
Chebyshev<FermionField> Cheby(fine.getChebyParams());
FunctionHermOp<FermionField> ChebyOp(Cheby,SchurOp);
PlainHermOp<FermionField> Op(SchurOp);
evals.resize(Nm);
evecs.resize(Nm,FrbGrid);
ImplicitlyRestartedLanczos<FermionField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,0,0);
FermionField src(FrbGrid);
typedef typename FermionField::scalar_type Scalar;
src=Scalar(1.0);
src.Checkerboard() = Odd;
int Nconv;
IRL.calc(evals, evecs,src,Nconv,false);
if(Nconv < Nstop) assert(0 && "Fine lanczos failed to converge the required number of evecs"); //algorithm doesn't consider this a failure
if(Nconv > Nstop){
//Yes this potentially throws away some evecs but it is better than having a random number of evecs between Nstop and Nm!
evals.resize(Nstop);
evecs.resize(Nstop, FrbGrid);
}
if(args.write_fine){
std::string evals_file = args.write_fine_file + "_evals.xml";
std::string evecs_file = args.write_fine_file + "_evecs.scidac";
std::cout << GridLogIRL<< "Writing evecs to "<<evecs_file<<std::endl;
emptyUserRecord record;
Grid::ScidacWriter WR(FrbGrid->IsBoss());
WR.open(evecs_file);
for(int k=0;k<evecs.size();k++) {
WR.writeScidacFieldRecord(evecs[k],record);
}
WR.close();
std::cout << GridLogIRL<< "Writing evals to "<<evals_file<<std::endl;
XmlWriter WRx(evals_file);
write(WRx,"evals",evals);
}
}
//Do the compression
LocalCoherenceCompressor<SiteSpinor,vTComplex,nbasis> compressor;
std::vector<FermionField> basis(nbasis,FrbGrid);
std::vector<CoarseField> compressed_evecs(evecs.size(),CoarseGrid5);
compressor.compress(basis, compressed_evecs, evecs, FrbGrid, CoarseGrid5);
compareBlockPromoteTimings(basis, compressed_evecs);
//Compare uncompressed and original evecs
compressor.compareEvecs(basis, compressed_evecs, evecs);
//Create the smoother
Chebyshev<FermionField> smoother(fine.getChebyParams());
//Test the quality of the uncompressed evecs
assert( compressor.testCompression(SchurOp, smoother, basis, compressed_evecs, evals, fine.stop_rsd, args.coarse_relax_tol) );
}
template<typename ActionType>
void run(ActionType &action, const std::string &config, const Args &args){
switch(args.basis_size){
case 50:
return run_b<50>(action,config,args);
case 100:
return run_b<100>(action,config,args);
case 150:
return run_b<150>(action,config,args);
case 200:
return run_b<200>(action,config,args);
case 250:
return run_b<250>(action,config,args);
case 300:
return run_b<300>(action,config,args);
case 350:
return run_b<350>(action,config,args);
case 400:
return run_b<400>(action,config,args);
default:
assert(0 && "Unsupported basis size: allowed values are 50,100,200,250,300,350,400");
}
}
//Note: because we rely upon physical properties we must use a "real" gauge configuration
int main (int argc, char ** argv) {
Grid_init(&argc,&argv);
GridLogIRL.TimingMode(1);
if(argc < 3){
std::cout << GridLogMessage << "Usage: <exe> <config file> <gparity dirs> <options>" << std::endl;
std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
std::cout << GridLogMessage << "Options:" << std::endl;
std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents (default 2.2.2.2.2)" << std::endl;
std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
std::cout << GridLogMessage << "--action : Set the action from 'DWF', 'Mobius' (default Mobius)" << std::endl;
std::cout << GridLogMessage << "--mobius_scale : Set the Mobius scale b+c (default 2)" << std::endl;
std::cout << GridLogMessage << "--basis_size : Set the basis size from 50,100,150,200,250,300,350,400 (default 100)" << std::endl;
Grid_finalize();
return 1;
}
std::string config = argv[1];
Args args;
GridCmdOptionIntVector(argv[2], args.GparityDirs);
assert(args.GparityDirs.size() == 3);
std::string action_s = "Mobius";
for(int i=3;i<argc;i++){
std::string sarg = argv[i];
if(sarg == "--Ls"){
args.Ls = std::stoi(argv[i+1]);
std::cout << GridLogMessage << "Set Ls to " << args.Ls << std::endl;
}else if(sarg == "--mass"){
std::istringstream ss(argv[i+1]); ss >> args.mass;
std::cout << GridLogMessage << "Set quark mass to " << args.mass << std::endl;
}else if(sarg == "--block"){
GridCmdOptionIntVector(argv[i+1], args.blockSize);
assert(args.blockSize.size() == 5);
std::cout << GridLogMessage << "Set block size to ";
for(int q=0;q<5;q++) std::cout << args.blockSize[q] << " ";
std::cout << std::endl;
}else if(sarg == "--is_cps_cfg"){
args.is_cps_cfg = true;
}else if(sarg == "--write_irl_templ"){
XmlWriter writer("irl_templ.xml");
write(writer,"Params",args.fine);
Grid_finalize();
return 0;
}else if(sarg == "--read_irl_fine"){
std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
XmlReader reader(argv[i+1]);
read(reader, "Params", args.fine);
}else if(sarg == "--write_fine"){
args.write_fine = true;
args.write_fine_file = argv[i+1];
}else if(sarg == "--read_fine"){
args.read_fine = true;
args.read_fine_file = argv[i+1];
}else if(sarg == "--coarse_relax_tol"){
std::istringstream ss(argv[i+1]); ss >> args.coarse_relax_tol;
std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << args.coarse_relax_tol << std::endl;
}else if(sarg == "--action"){
action_s = argv[i+1];
std::cout << "Action set to " << action_s << std::endl;
}else if(sarg == "--mobius_scale"){
std::istringstream ss(argv[i+1]); ss >> args.mobius_scale;
std::cout << GridLogMessage << "Set Mobius scale to " << args.mobius_scale << std::endl;
}else if(sarg == "--basis_size"){
args.basis_size = std::stoi(argv[i+1]);
std::cout << GridLogMessage << "Set basis size to " << args.basis_size << std::endl;
}
}
//Fine grids
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(args.Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(args.Ls,UGrid);
LatticeGaugeField Umu(UGrid);
bool is_gparity = false;
for(auto g : args.GparityDirs) if(g) is_gparity = true;
double bmc = 1.;
double b = (args.mobius_scale + bmc)/2.; // b = 1/2 [ (b+c) + (b-c) ]
double c = (args.mobius_scale - bmc)/2.; // c = 1/2 [ (b+c) - (b-c) ]
if(is_gparity){
GparityWilsonImplD::ImplParams Params = setupGparityParams(args.GparityDirs);
readConfiguration<ConjugateGimplD>(Umu, config, args.is_cps_cfg); //Read the gauge field
if(action_s == "DWF"){
GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
run(action, config, args);
}else if(action_s == "Mobius"){
GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
run(action, config, args);
}
}else{
WilsonImplD::ImplParams Params = setupParams();
readConfiguration<PeriodicGimplD>(Umu, config, args.is_cps_cfg); //Read the gauge field
if(action_s == "DWF"){
DomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
run(action, config, args);
}else if(action_s == "Mobius"){
MobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
run(action, config, args);
}
}
Grid_finalize();
}