1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
2018-06-04 18:34:15 +01:00

844 lines
26 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Chulwoo Jung <chulwoo@bnl.gov>
Author: Christoph Lehner <clehner@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BIRL_H
#define GRID_BIRL_H
#include <string.h> //memset
//#include <zlib.h>
#include <sys/stat.h>
namespace Grid {
////////////////////////////////////////////////////////
// Move following 100 LOC to lattice/Lattice_basis.h
////////////////////////////////////////////////////////
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class Field>
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
parallel_region
{
Vector < vobj > B; // Thread private
PARALLEL_CRITICAL { B.resize(Nm); }
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis[k]._odata[ss];
}
}
for(int j=j0; j<j1; ++j){
basis[j]._odata[ss] = B[j];
}
}
}
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0]._grid;
result.checkerboard = basis[0].checkerboard;
parallel_for(int ss=0;ss < grid->oSites();ss++){
vobj B = zero;
for(int k=k0; k<k1; ++k){
B +=Qt(j,k) * basis[k]._odata[ss];
}
result._odata[ss] = B;
}
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////
template<class Field> class ImplicitlyRestartedLanczosTester
{
public:
virtual int TestConvergence(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
virtual int ReconstructEval(int j,RealD resid,Field &evec, RealD &eval,RealD evalMaxApprox)=0;
};
enum IRLdiagonalisation {
IRLdiagonaliseWithDSTEGR,
IRLdiagonaliseWithQR,
IRLdiagonaliseWithEigen
};
template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public ImplicitlyRestartedLanczosTester<Field>
{
public:
LinearFunction<Field> &_HermOp;
ImplicitlyRestartedLanczosHermOpTester(LinearFunction<Field> &HermOp) : _HermOp(HermOp) { };
int ReconstructEval(int j,RealD resid,Field &B, RealD &eval,RealD evalMaxApprox)
{
return TestConvergence(j,resid,B,eval,evalMaxApprox);
}
int TestConvergence(int j,RealD eresid,Field &B, RealD &eval,RealD evalMaxApprox)
{
Field v(B);
RealD eval_poly = eval;
// Apply operator
_HermOp(B,v);
RealD vnum = real(innerProduct(B,v)); // HermOp.
RealD vden = norm2(B);
RealD vv0 = norm2(v);
eval = vnum/vden;
v -= eval*B;
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
std::cout.precision(13);
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
<<std::endl;
int conv=0;
if( (vv<eresid*eresid) ) conv = 1;
return conv;
}
};
template<class Field>
class ImplicitlyRestartedLanczos {
private:
const RealD small = 1.0e-8;
int MaxIter;
int MinRestart; // Minimum number of restarts; only check for convergence after
int Nstop; // Number of evecs checked for convergence
int Nk; // Number of converged sought
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
int Nm; // Nm -- total number of vectors
IRLdiagonalisation diagonalisation;
int orth_period;
RealD OrthoTime;
RealD eresid, betastp;
////////////////////////////////
// Embedded objects
////////////////////////////////
LinearFunction<Field> &_PolyOp;
LinearFunction<Field> &_HermOp;
ImplicitlyRestartedLanczosTester<Field> &_Tester;
// Default tester provided (we need a ref to something in default case)
ImplicitlyRestartedLanczosHermOpTester<Field> SimpleTester;
/////////////////////////
// Constructor
/////////////////////////
public:
//////////////////////////////////////////////////////////////////
// PAB:
//////////////////////////////////////////////////////////////////
// Too many options & knobs.
// Eliminate:
// orth_period
// betastp
// MinRestart
//
// Do we really need orth_period
// What is the theoretical basis & guarantees of betastp ?
// Nstop=Nk viable?
// MinRestart avoidable with new convergence test?
// Could cut to PolyOp, HermOp, Tester, Nk, Nm, resid, maxiter (+diagonalisation)
// HermOp could be eliminated if we dropped the Power method for max eval.
// -- also: The eval, eval2, eval2_copy stuff is still unnecessarily unclear
//////////////////////////////////////////////////////////////////
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
LinearFunction<Field> & HermOp,
ImplicitlyRestartedLanczosTester<Field> & Tester,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
eresid(_eresid), betastp(_betastp),
MaxIter(_MaxIter) , MinRestart(_MinRestart),
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
ImplicitlyRestartedLanczos(LinearFunction<Field> & PolyOp,
LinearFunction<Field> & HermOp,
int _Nstop, // sought vecs
int _Nk, // sought vecs
int _Nm, // spare vecs
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
eresid(_eresid), betastp(_betastp),
MaxIter(_MaxIter) , MinRestart(_MinRestart),
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
////////////////////////////////
// Helpers
////////////////////////////////
template<typename T> static RealD normalise(T& v)
{
RealD nn = norm2(v);
nn = sqrt(nn);
v = v * (1.0/nn);
return nn;
}
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
{
OrthoTime-=usecond()/1e6;
basisOrthogonalize(evec,w,k);
normalise(w);
OrthoTime+=usecond()/1e6;
}
/* Rudy Arthur's thesis pp.137
------------------------
Require: M > K P = M K †
Compute the factorization AVM = VM HM + fM eM
repeat
Q=I
for i = 1,...,P do
QiRi =HM θiI Q = QQi
H M = Q †i H M Q i
end for
βK =HM(K+1,K) σK =Q(M,K)
r=vK+1βK +rσK
VK =VM(1:M)Q(1:M,1:K)
HK =HM(1:K,1:K)
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
until convergence
*/
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse=false)
{
GridBase *grid = src._grid;
assert(grid == evec[0]._grid);
GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
}
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
assert(Nm <= evec.size() && Nm <= eval.size());
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
RealD evalMaxApprox = 0.0;
{
auto src_n = src;
auto tmp = src;
const int _MAX_ITER_IRL_MEVAPP_ = 50;
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
normalise(src_n);
_HermOp(src_n,tmp);
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
src_n = tmp;
}
}
std::vector<RealD> lme(Nm);
std::vector<RealD> lme2(Nm);
std::vector<RealD> eval2(Nm);
std::vector<RealD> eval2_copy(Nm);
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
Field f(grid);
Field v(grid);
int k1 = 1;
int k2 = Nk;
RealD beta_k;
Nconv = 0;
// Set initial vector
evec[0] = src;
normalise(evec[0]);
// Initial Nk steps
OrthoTime=0.;
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
//////////////////////////////////
// Restarting loop begins
//////////////////////////////////
int iter;
for(iter = 0; iter<MaxIter; ++iter){
OrthoTime=0.;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
std::cout<< GridLogMessage <<" **********************"<< std::endl;
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
f *= lme[Nm-1];
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
//////////////////////////////////
// getting eigenvalues
//////////////////////////////////
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k+k1-1];
lme2[k] = lme[k+k1-1];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
//////////////////////////////////
// sorting
//////////////////////////////////
eval2_copy = eval2;
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end(),std::greater<RealD>());
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
const int chunk=8;
for(int io=0; io<k2;io+=chunk){
std::cout<<GridLogIRL << "eval "<< std::setw(3) << io ;
for(int ii=0;ii<chunk;ii++){
if ( (io+ii)<k2 )
std::cout<< " "<< std::setw(12)<< eval2[io+ii];
}
std::cout << std::endl;
}
//////////////////////////////////
// Implicitly shifted QR transformations
//////////////////////////////////
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
for(int ip=k2; ip<Nm; ++ip){
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
}
std::cout<<GridLogIRL <<"QR decomposed "<<std::endl;
assert(k2<Nm); assert(k2<Nm); assert(k1>0);
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
std::cout<<GridLogIRL <<"basisRotated by Qt"<<std::endl;
////////////////////////////////////////////////////
// Compressed vector f and beta(k2)
////////////////////////////////////////////////////
f *= Qt(k2-1,Nm-1);
f += lme[k2-1] * evec[k2];
beta_k = norm2(f);
beta_k = sqrt(beta_k);
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
RealD betar = 1.0/beta_k;
evec[k2] = betar * f;
lme[k2-1] = beta_k;
////////////////////////////////////////////////////
// Convergence test
////////////////////////////////////////////////////
for(int k=0; k<Nm; ++k){
eval2[k] = eval[k];
lme2[k] = lme[k];
}
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
Nconv = 0;
if (iter >= MinRestart) {
std::cout << GridLogIRL << "Test convergence: rotate subset of vectors to test convergence " << std::endl;
Field B(grid); B.checkerboard = evec[0].checkerboard;
// power of two search pattern; not every evalue in eval2 is assessed.
int allconv =1;
for(int jj = 1; jj<=Nstop; jj*=2){
int j = Nstop-jj;
RealD e = eval2_copy[j]; // Discard the evalue
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) {
allconv=0;
}
}
// Do evec[0] for good measure
{
int j=0;
RealD e = eval2_copy[0];
basisRotateJ(B,evec,Qt,j,0,Nk,Nm);
if( !_Tester.TestConvergence(j,eresid,B,e,evalMaxApprox) ) allconv=0;
}
if ( allconv ) Nconv = Nstop;
// test if we converged, if so, terminate
std::cout<<GridLogIRL<<" #modes converged: >= "<<Nconv<<"/"<<Nstop<<std::endl;
// if( Nconv>=Nstop || beta_k < betastp){
if( Nconv>=Nstop){
goto converged;
}
} else {
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
} // end of iter loop
}
std::cout<<GridLogError<<"\n NOT converged.\n";
abort();
converged:
{
Field B(grid); B.checkerboard = evec[0].checkerboard;
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
std::cout << GridLogIRL << " Rotated basis"<<std::endl;
Nconv=0;
//////////////////////////////////////////////////////////////////////
// Full final convergence test; unconditionally applied
//////////////////////////////////////////////////////////////////////
for(int j = 0; j<=Nk; j++){
B=evec[j];
if( _Tester.ReconstructEval(j,eresid,B,eval2[j],evalMaxApprox) ) {
Nconv++;
}
}
if ( Nconv < Nstop )
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
eval=eval2;
//Keep only converged
eval.resize(Nconv);// Nstop?
evec.resize(Nconv,grid);// Nstop?
basisSortInPlace(evec,eval,reverse);
}
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
}
private:
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
8. EndDo
*/
void step(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
const RealD tiny = 1.0e-20;
assert( k< Nm );
GridStopWatch gsw_op,gsw_o;
Field& evec_k = evec[k];
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
if(k>0) w -= lme[k-1] * evec[k-1];
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
RealD alph = real(zalph);
w = w - alph * evec_k;// 5. wk:=wkαkvk
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
lmd[k] = alph;
lme[k] = beta;
if (k>0 && k % orth_period == 0) {
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt, // Nm x Nm
GridBase *grid)
{
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
for (int i = 0; i < Nk; i++) {
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
}
for (int i = 0; i < Nk; i++) {
for (int j = 0; j < Nk; j++) {
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
}
}
}
///////////////////////////////////////////////////////////////////////////
// File could end here if settle on Eigen ??? !!!
///////////////////////////////////////////////////////////////////////////
void QR_decomp(std::vector<RealD>& lmd, // Nm
std::vector<RealD>& lme, // Nm
int Nk, int Nm, // Nk, Nm
Eigen::MatrixXd& Qt, // Nm x Nm matrix
RealD Dsh, int kmin, int kmax)
{
int k = kmin-1;
RealD x;
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
RealD c = ( lmd[k] -Dsh) *Fden;
RealD s = -lme[k] *Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
x =-s*lme[k+1];
lme[k+1] = c*lme[k+1];
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt(k,i);
RealD Qtmp2 = Qt(k+1,i);
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
}
// Givens transformations
for(int k = kmin; k < kmax-1; ++k){
RealD Fden = 1.0/hypot(x,lme[k-1]);
RealD c = lme[k-1]*Fden;
RealD s = - x*Fden;
RealD tmpa1 = lmd[k];
RealD tmpa2 = lmd[k+1];
RealD tmpb = lme[k];
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
lme[k-1] = c*lme[k-1] -s*x;
if(k != kmax-2){
x = -s*lme[k+1];
lme[k+1] = c*lme[k+1];
}
for(int i=0; i<Nk; ++i){
RealD Qtmp1 = Qt(k,i);
RealD Qtmp2 = Qt(k+1,i);
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
}
}
}
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
} else {
assert(0);
}
}
#ifdef USE_LAPACK
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
#endif
void diagonalize_lapack(std::vector<RealD>& lmd,
std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd& Qt,
GridBase *grid)
{
#ifdef USE_LAPACK
const int size = Nm;
int NN = Nk;
double evals_tmp[NN];
double evec_tmp[NN][NN];
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
double DD[NN];
double EE[NN];
for (int i = 0; i< NN; i++) {
for (int j = i - 1; j <= i + 1; j++) {
if ( j < NN && j >= 0 ) {
if (i==j) DD[i] = lmd[i];
if (i==j) evals_tmp[i] = lmd[i];
if (j==(i-1)) EE[j] = lme[j];
}
}
}
int evals_found;
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
int liwork = 3+NN*10 ;
int iwork[liwork];
double work[lwork];
int isuppz[2*NN];
char jobz = 'V'; // calculate evals & evecs
char range = 'I'; // calculate all evals
// char range = 'A'; // calculate all evals
char uplo = 'U'; // refer to upper half of original matrix
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
int ifail[NN];
int info;
int total = grid->_Nprocessors;
int node = grid->_processor;
int interval = (NN/total)+1;
double vl = 0.0, vu = 0.0;
int il = interval*node+1 , iu = interval*(node+1);
if (iu > NN) iu=NN;
double tol = 0.0;
if (1) {
memset(evals_tmp,0,sizeof(double)*NN);
if ( il <= NN){
LAPACK_dstegr(&jobz, &range, &NN,
(double*)DD, (double*)EE,
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
&tol, // tolerance
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
isuppz,
work, &lwork, iwork, &liwork,
&info);
for (int i = iu-1; i>= il-1; i--){
evals_tmp[i] = evals_tmp[i - (il-1)];
if (il>1) evals_tmp[i-(il-1)]=0.;
for (int j = 0; j< NN; j++){
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
if (il>1) evec_tmp[i-(il-1)][j]=0.;
}
}
}
{
grid->GlobalSumVector(evals_tmp,NN);
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
}
}
// Safer to sort instead of just reversing it,
// but the document of the routine says evals are sorted in increasing order.
// qr gives evals in decreasing order.
for(int i=0;i<NN;i++){
lmd [NN-1-i]=evals_tmp[i];
for(int j=0;j<NN;j++){
Qt((NN-1-i),j)=evec_tmp[i][j];
}
}
#else
assert(0);
#endif
}
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
int Nk, int Nm,
Eigen::MatrixXd & Qt,
GridBase *grid)
{
int QRiter = 100*Nm;
int kmin = 1;
int kmax = Nk;
// (this should be more sophisticated)
for(int iter=0; iter<QRiter; ++iter){
// determination of 2x2 leading submatrix
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
// (Dsh: shift)
// transformation
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
// Convergence criterion (redef of kmin and kamx)
for(int j=kmax-1; j>= kmin; --j){
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
if(fabs(lme[j-1])+dds > dds){
kmax = j+1;
goto continued;
}
}
QRiter = iter;
return;
continued:
for(int j=0; j<kmax-1; ++j){
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
if(fabs(lme[j])+dds > dds){
kmin = j+1;
break;
}
}
}
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
abort();
}
};
}
#endif