mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
215 lines
7.4 KiB
C++
215 lines
7.4 KiB
C++
#if 1
|
|
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: SchurDiagTwoKappa.h
|
|
|
|
Copyright (C) 2017
|
|
|
|
Author: Christoph Lehner
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef _SCHUR_DIAG_TWO_KAPPA_H
|
|
#define _SCHUR_DIAG_TWO_KAPPA_H
|
|
|
|
namespace Grid {
|
|
|
|
// This is specific to (Z)mobius fermions
|
|
template<class Matrix, class Field>
|
|
class KappaSimilarityTransform {
|
|
public:
|
|
INHERIT_IMPL_TYPES(Matrix);
|
|
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
|
|
|
|
KappaSimilarityTransform (Matrix &zmob) {
|
|
for (int i=0;i<(int)zmob.bs.size();i++) {
|
|
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
|
|
kappa.push_back( k );
|
|
kappaDag.push_back( conj(k) );
|
|
kappaInv.push_back( 1.0 / k );
|
|
kappaInvDag.push_back( 1.0 / conj(k) );
|
|
}
|
|
}
|
|
|
|
template<typename vobj>
|
|
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
|
|
GridBase *grid=out._grid;
|
|
out.checkerboard = in.checkerboard;
|
|
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
|
|
int Ls = grid->_rdimensions[0];
|
|
parallel_for(int ss=0;ss<grid->oSites();ss++){
|
|
vobj tmp = s[ss % Ls]*in._odata[ss];
|
|
vstream(out._odata[ss],tmp);
|
|
}
|
|
}
|
|
|
|
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
|
|
sscale(in,out,s);
|
|
return norm2(out);
|
|
}
|
|
|
|
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
|
|
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
|
|
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
|
|
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
|
|
|
|
};
|
|
|
|
template<class Matrix,class Field>
|
|
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
|
|
public:
|
|
KappaSimilarityTransform<Matrix, Field> _S;
|
|
SchurDiagTwoOperator<Matrix, Field> _Mat;
|
|
|
|
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
|
|
|
|
virtual RealD Mpc (const Field &in, Field &out) {
|
|
Field tmp(in._grid);
|
|
|
|
_S.MInv(in,out);
|
|
_Mat.Mpc(out,tmp);
|
|
return _S.M(tmp,out);
|
|
|
|
}
|
|
virtual RealD MpcDag (const Field &in, Field &out){
|
|
Field tmp(in._grid);
|
|
|
|
_S.MDag(in,out);
|
|
_Mat.MpcDag(out,tmp);
|
|
return _S.MInvDag(tmp,out);
|
|
}
|
|
};
|
|
|
|
#if 0
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Copied from DiagTwoSolve
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Field> class SchurRedBlackDiagTwoSolve {
|
|
private:
|
|
OperatorFunction<Field> & _HermitianRBSolver;
|
|
int CBfactorise;
|
|
public:
|
|
|
|
/////////////////////////////////////////////////////
|
|
// Wrap the usual normal equations Schur trick
|
|
/////////////////////////////////////////////////////
|
|
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
|
_HermitianRBSolver(HermitianRBSolver)
|
|
{
|
|
CBfactorise=0;
|
|
};
|
|
|
|
template<class Matrix>
|
|
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
|
|
|
// FIXME CGdiagonalMee not implemented virtual function
|
|
// FIXME use CBfactorise to control schur decomp
|
|
GridBase *grid = _Matrix.RedBlackGrid();
|
|
GridBase *fgrid= _Matrix.Grid();
|
|
|
|
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
|
|
|
Field src_e(grid);
|
|
Field src_o(grid);
|
|
Field sol_e(grid);
|
|
Field sol_o(grid);
|
|
Field tmp(grid);
|
|
Field Mtmp(grid);
|
|
Field resid(fgrid);
|
|
|
|
pickCheckerboard(Even,src_e,in);
|
|
pickCheckerboard(Odd ,src_o,in);
|
|
pickCheckerboard(Even,sol_e,out);
|
|
pickCheckerboard(Odd ,sol_o,out);
|
|
|
|
/////////////////////////////////////////////////////
|
|
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
|
/////////////////////////////////////////////////////
|
|
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
|
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
|
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
|
|
|
// get the right MpcDag
|
|
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
|
|
|
//////////////////////////////////////////////////////////////
|
|
// Call the red-black solver
|
|
//////////////////////////////////////////////////////////////
|
|
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
|
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
|
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
|
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
|
|
|
///////////////////////////////////////////////////
|
|
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
|
///////////////////////////////////////////////////
|
|
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
|
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
|
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
|
|
|
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
|
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
|
|
|
// Verify the unprec residual
|
|
_Matrix.M(out,resid);
|
|
resid = resid-in;
|
|
RealD ns = norm2(in);
|
|
RealD nr = norm2(resid);
|
|
|
|
std::cout<<GridLogMessage << "SchurRedBlackDiagTwoKappa solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
|
}
|
|
};
|
|
#endif
|
|
namespace QCD{
|
|
//
|
|
// Determinant is det of middle factor
|
|
// This assumes Mee is indept of U.
|
|
//
|
|
//
|
|
template<class Impl>
|
|
class SchurDifferentiableDiagTwo: public SchurDiagTwoOperator<FermionOperator<Impl>,typename Impl::FermionField>
|
|
{
|
|
public:
|
|
INHERIT_IMPL_TYPES(Impl);
|
|
|
|
typedef FermionOperator<Impl> Matrix;
|
|
|
|
SchurDifferentiableDiagTwo (Matrix &Mat) : SchurDiagTwoOperator<Matrix,FermionField>(Mat) {};
|
|
};
|
|
#if 0
|
|
template<class Impl>
|
|
class SchurDifferentiableDiagTwoKappa : public SchurDiagTwoKappaOperator<FermionOperator<Impl>,typename Impl::FermionField>
|
|
{
|
|
public:
|
|
INHERIT_IMPL_TYPES(Impl);
|
|
|
|
typedef FermionOperator<Impl> Matrix;
|
|
|
|
SchurDifferentiableDiagTwoKappa (Matrix &Mat) : SchurDiagTwoKappaOperator<Matrix,FermionField>(Mat) {};
|
|
};
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|