1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-13 01:05:36 +00:00
Grid/Hadrons/Modules/MDistil/Distil.hpp

125 lines
5.0 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/Distil.hpp
Copyright (C) 2015-2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_Distil_hpp_
#define Hadrons_MDistil_Distil_hpp_
#include <Hadrons/NamedTensor.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Solver.hpp>
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/DilutedNoise.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
Distillation code that is common across modules
Documentation on how to use this code available at
* https://aportelli.github.io/Hadrons-doc/#/mdistil *
Notation for (stochastic) DistilParameters taken from 1104.3870:
TI is interlaced dilution in time (corresponding to Nt = time-dimension of the lattice)
LI is interlaced dilution in laplacian-eigenvector space (corresponding to nvec)
SI is interlaced dilution in spin (corresponding to Ns, taken from Grid, usually Ns=4)
This code automatically computes perambulators using exact distillation if
* (TI,LI,SI) = (Nt,nvec,Ns) *
In this case, nnoise=1 and Noises is set to an array of values =1 as well.
tsrc then specifies the only timeslice on which the sources are supported.
(( for stochastic distillation, the vaue of tsrc has no meaning in this code ))
******************************************************************************/
struct DistilParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(DistilParameters,
int, nvec,
int, nnoise,
int, tsrc,
int, TI,
int, LI,
int, SI )
};
/******************************************************************************
Make a lower dimensional grid in preparation for local slice operations
******************************************************************************/
inline void MakeLowerDimGrid( std::unique_ptr<GridCartesian> &up, GridCartesian * gridHD )
{
int nd{static_cast<int>(gridHD->_ndimension)};
Coordinate latt_size = gridHD->_gdimensions;
latt_size[nd-1] = 1;
Coordinate simd_layout = GridDefaultSimd(nd-1, vComplex::Nsimd());
simd_layout.push_back( 1 );
Coordinate mpi_layout = gridHD->_processors;
mpi_layout[nd-1] = 1;
up.reset( new GridCartesian(latt_size,simd_layout,mpi_layout,*gridHD) );
}
/*************************************************************************************
Rotate eigenvectors into our phase convention
First component of first eigenvector is real and positive
*************************************************************************************/
inline void RotateEigen(std::vector<LatticeColourVector> & evec)
{
ColourVector cv0;
auto grid = evec[0].Grid();
Coordinate siteFirst(grid->Nd(),0);
peekSite(cv0, evec[0], siteFirst);
const std::complex<Real> cplx0{cv0()()(0).real(), cv0()()(0).imag()};
if( cplx0.imag() == 0 )
LOG(Message) << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl;
else
{
const Real cplx0_mag{ std::abs(cplx0) };
const std::complex<Real> std_phase{std::conj(cplx0/cplx0_mag)};
LOG(Message) << "RotateEigen() : Site 0 : |" << cplx0 << "|=" << cplx0_mag
<< " => phase=" << (std::arg(std_phase) / M_PI) << " pi" << std::endl;
{
const Grid::Complex phase{std_phase.real(),std_phase.imag()};
for( int k = 0 ; k < evec.size() ; k++ )
evec[k] *= phase;
// Get rid of the rounding error in imaginary phase on the very first site
peekSite(cv0, evec[0], siteFirst);
cv0()()(0).imag(0); // this should be zero after the phase multiply - force it to be so
pokeSite(cv0, evec[0], siteFirst);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif