mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
d1afebf71e
6000 matmuls CG unprec 2000 matmuls CG prec (4000 eo muls) 1050 matmuls PGCR on 16^3 x 32 x 8 m=.01 Substantial effort on timing and logging infrastructure
761 lines
17 KiB
C++
761 lines
17 KiB
C++
/*
|
|
|
|
Mike Clark - 25th May 2005
|
|
|
|
alg_remez.C
|
|
|
|
AlgRemez is an implementation of the Remez algorithm, which in this
|
|
case is used for generating the optimal nth root rational
|
|
approximation.
|
|
|
|
Note this class requires the gnu multiprecision (GNU MP) library.
|
|
|
|
*/
|
|
|
|
#include<math.h>
|
|
#include<stdio.h>
|
|
#include<stdlib.h>
|
|
#include<string>
|
|
#include<iostream>
|
|
#include<iomanip>
|
|
#include<cassert>
|
|
|
|
#include<algorithms/approx/Remez.h>
|
|
|
|
// Constructor
|
|
AlgRemez::AlgRemez(double lower, double upper, long precision)
|
|
{
|
|
prec = precision;
|
|
bigfloat::setDefaultPrecision(prec);
|
|
|
|
apstrt = lower;
|
|
apend = upper;
|
|
apwidt = apend - apstrt;
|
|
|
|
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
|
|
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
|
|
|
|
alloc = 0;
|
|
n = 0;
|
|
d = 0;
|
|
|
|
foundRoots = 0;
|
|
|
|
// Only require the approximation spread to be less than 1 ulp
|
|
tolerance = 1e-15;
|
|
}
|
|
|
|
// Destructor
|
|
AlgRemez::~AlgRemez()
|
|
{
|
|
if (alloc) {
|
|
delete [] param;
|
|
delete [] roots;
|
|
delete [] poles;
|
|
delete [] xx;
|
|
delete [] mm;
|
|
delete [] a_power;
|
|
delete [] a;
|
|
}
|
|
}
|
|
|
|
// Free memory and reallocate as necessary
|
|
void AlgRemez::allocate(int num_degree, int den_degree)
|
|
{
|
|
// Arrays have previously been allocated, deallocate first, then allocate
|
|
if (alloc) {
|
|
delete [] param;
|
|
delete [] roots;
|
|
delete [] poles;
|
|
delete [] xx;
|
|
delete [] mm;
|
|
}
|
|
|
|
// Note use of new and delete in memory allocation - cannot run on qcdsp
|
|
param = new bigfloat[num_degree+den_degree+1];
|
|
roots = new bigfloat[num_degree];
|
|
poles = new bigfloat[den_degree];
|
|
xx = new bigfloat[num_degree+den_degree+3];
|
|
mm = new bigfloat[num_degree+den_degree+2];
|
|
|
|
if (!alloc) {
|
|
// The coefficients of the sum in the exponential
|
|
a = new bigfloat[SUM_MAX];
|
|
a_power = new int[SUM_MAX];
|
|
}
|
|
|
|
alloc = 1;
|
|
}
|
|
|
|
// Reset the bounds of the approximation
|
|
void AlgRemez::setBounds(double lower, double upper)
|
|
{
|
|
apstrt = lower;
|
|
apend = upper;
|
|
apwidt = apend - apstrt;
|
|
}
|
|
|
|
// Generate the rational approximation x^(pnum/pden)
|
|
double AlgRemez::generateApprox(int degree, unsigned long pnum,
|
|
unsigned long pden)
|
|
{
|
|
return generateApprox(degree, degree, pnum, pden);
|
|
}
|
|
|
|
double AlgRemez::generateApprox(int num_degree, int den_degree,
|
|
unsigned long pnum, unsigned long pden)
|
|
{
|
|
double *a_param = 0;
|
|
int *a_pow = 0;
|
|
return generateApprox(num_degree, den_degree, pnum, pden, 0, a_param, a_pow);
|
|
}
|
|
|
|
// Generate the rational approximation x^(pnum/pden)
|
|
double AlgRemez::generateApprox(int num_degree, int den_degree,
|
|
unsigned long pnum, unsigned long pden,
|
|
int a_len, double *a_param, int *a_pow)
|
|
{
|
|
std::cout<<"Degree of the approximation is ("<<num_degree<<","<<den_degree<<")\n";
|
|
std::cout<<"Approximating the function x^("<<pnum<<"/"<<pden<<")\n";
|
|
|
|
// Reallocate arrays, since degree has changed
|
|
if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
|
|
|
|
assert(a_len<=SUM_MAX);
|
|
|
|
step = new bigfloat[num_degree+den_degree+2];
|
|
|
|
a_length = a_len;
|
|
for (int j=0; j<a_len; j++) {
|
|
a[j]= a_param[j];
|
|
a_power[j] = a_pow[j];
|
|
}
|
|
|
|
power_num = pnum;
|
|
power_den = pden;
|
|
spread = 1.0e37;
|
|
iter = 0;
|
|
|
|
n = num_degree;
|
|
d = den_degree;
|
|
neq = n + d + 1;
|
|
|
|
initialGuess();
|
|
stpini(step);
|
|
|
|
while (spread > tolerance) { //iterate until convergance
|
|
|
|
if (iter++%100==0)
|
|
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta<<std::endl;
|
|
|
|
equations();
|
|
if (delta < tolerance) {
|
|
std::cout<<"Delta too small, try increasing precision\n";
|
|
assert(0);
|
|
};
|
|
assert( delta>= tolerance);
|
|
|
|
search(step);
|
|
}
|
|
|
|
int sign;
|
|
double error = (double)getErr(mm[0],&sign);
|
|
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
|
|
|
|
// Once the approximation has been generated, calculate the roots
|
|
if(!root()) {
|
|
std::cout<<"Root finding failed\n";
|
|
} else {
|
|
foundRoots = 1;
|
|
}
|
|
|
|
delete [] step;
|
|
|
|
// Return the maximum error in the approximation
|
|
return error;
|
|
}
|
|
|
|
// Return the partial fraction expansion of the approximation x^(pnum/pden)
|
|
int AlgRemez::getPFE(double *Res, double *Pole, double *Norm) {
|
|
|
|
if (n!=d) {
|
|
std::cout<<"Cannot handle case: Numerator degree neq Denominator degree\n";
|
|
return 0;
|
|
}
|
|
|
|
if (!alloc) {
|
|
std::cout<<"Approximation not yet generated\n";
|
|
return 0;
|
|
}
|
|
|
|
if (!foundRoots) {
|
|
std::cout<<"Roots not found, so PFE cannot be taken\n";
|
|
return 0;
|
|
}
|
|
|
|
bigfloat *r = new bigfloat[n];
|
|
bigfloat *p = new bigfloat[d];
|
|
|
|
for (int i=0; i<n; i++) r[i] = roots[i];
|
|
for (int i=0; i<d; i++) p[i] = poles[i];
|
|
|
|
// Perform a partial fraction expansion
|
|
pfe(r, p, norm);
|
|
|
|
// Convert to double and return
|
|
*Norm = (double)norm;
|
|
for (int i=0; i<n; i++) Res[i] = (double)r[i];
|
|
for (int i=0; i<d; i++) Pole[i] = (double)p[i];
|
|
|
|
delete [] r;
|
|
delete [] p;
|
|
|
|
// Where the smallest shift is located
|
|
return 0;
|
|
}
|
|
|
|
// Return the partial fraction expansion of the approximation x^(-pnum/pden)
|
|
int AlgRemez::getIPFE(double *Res, double *Pole, double *Norm) {
|
|
|
|
if (n!=d) {
|
|
std::cout<<"Cannot handle case: Numerator degree neq Denominator degree\n";
|
|
return 0;
|
|
}
|
|
|
|
if (!alloc) {
|
|
std::cout<<"Approximation not yet generated\n";
|
|
return 0;
|
|
}
|
|
|
|
if (!foundRoots) {
|
|
std::cout<<"Roots not found, so PFE cannot be taken\n";
|
|
return 0;
|
|
}
|
|
|
|
bigfloat *r = new bigfloat[d];
|
|
bigfloat *p = new bigfloat[n];
|
|
|
|
// Want the inverse function
|
|
for (int i=0; i<n; i++) {
|
|
r[i] = poles[i];
|
|
p[i] = roots[i];
|
|
}
|
|
|
|
// Perform a partial fraction expansion
|
|
pfe(r, p, (bigfloat)1l/norm);
|
|
|
|
// Convert to double and return
|
|
*Norm = (double)((bigfloat)1l/(norm));
|
|
for (int i=0; i<n; i++) {
|
|
Res[i] = (double)r[i];
|
|
Pole[i] = (double)p[i];
|
|
}
|
|
|
|
delete [] r;
|
|
delete [] p;
|
|
|
|
// Where the smallest shift is located
|
|
return 0;
|
|
}
|
|
|
|
// Initial values of maximal and minimal errors
|
|
void AlgRemez::initialGuess() {
|
|
|
|
// Supply initial guesses for solution points
|
|
long ncheb = neq; // Degree of Chebyshev error estimate
|
|
bigfloat a, r;
|
|
|
|
// Find ncheb+1 extrema of Chebyshev polynomial
|
|
|
|
a = ncheb;
|
|
mm[0] = apstrt;
|
|
for (long i = 1; i < ncheb; i++) {
|
|
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
|
|
//r *= sqrt_bf(r);
|
|
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
|
|
mm[i] = apstrt + r * apwidt;
|
|
}
|
|
mm[ncheb] = apend;
|
|
|
|
a = 2.0 * ncheb;
|
|
for (long i = 0; i <= ncheb; i++) {
|
|
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
|
|
//r *= sqrt_bf(r); // Squeeze to low end of interval
|
|
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
|
|
xx[i] = apstrt + r * apwidt;
|
|
}
|
|
}
|
|
|
|
// Initialise step sizes
|
|
void AlgRemez::stpini(bigfloat *step) {
|
|
xx[neq+1] = apend;
|
|
delta = 0.25;
|
|
step[0] = xx[0] - apstrt;
|
|
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
|
|
step[neq] = step[neq-1];
|
|
}
|
|
|
|
// Search for error maxima and minima
|
|
void AlgRemez::search(bigfloat *step) {
|
|
bigfloat a, q, xm, ym, xn, yn, xx0, xx1;
|
|
int i, j, meq, emsign, ensign, steps;
|
|
|
|
meq = neq + 1;
|
|
bigfloat *yy = new bigfloat[meq];
|
|
|
|
bigfloat eclose = 1.0e30;
|
|
bigfloat farther = 0l;
|
|
|
|
j = 1;
|
|
xx0 = apstrt;
|
|
|
|
for (i = 0; i < meq; i++) {
|
|
steps = 0;
|
|
xx1 = xx[i]; // Next zero
|
|
if (i == meq-1) xx1 = apend;
|
|
xm = mm[i];
|
|
ym = getErr(xm,&emsign);
|
|
q = step[i];
|
|
xn = xm + q;
|
|
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
|
|
q = -q;
|
|
xn = xm;
|
|
yn = ym;
|
|
ensign = emsign;
|
|
} else {
|
|
yn = getErr(xn,&ensign);
|
|
if (yn < ym) {
|
|
q = -q;
|
|
xn = xm;
|
|
yn = ym;
|
|
ensign = emsign;
|
|
}
|
|
}
|
|
|
|
while(yn >= ym) { // March until error becomes smaller.
|
|
if (++steps > 10) break;
|
|
ym = yn;
|
|
xm = xn;
|
|
emsign = ensign;
|
|
a = xm + q;
|
|
if (a == xm || a <= xx0 || a >= xx1) break;// Must not skip over the zeros either side.
|
|
xn = a;
|
|
yn = getErr(xn,&ensign);
|
|
}
|
|
|
|
mm[i] = xm; // Position of maximum
|
|
yy[i] = ym; // Value of maximum
|
|
|
|
if (eclose > ym) eclose = ym;
|
|
if (farther < ym) farther = ym;
|
|
|
|
xx0 = xx1; // Walk to next zero.
|
|
} // end of search loop
|
|
|
|
q = (farther - eclose); // Decrease step size if error spread increased
|
|
if (eclose != 0.0) q /= eclose; // Relative error spread
|
|
if (q >= spread) delta *= 0.5; // Spread is increasing; decrease step size
|
|
spread = q;
|
|
|
|
for (i = 0; i < neq; i++) {
|
|
q = yy[i+1];
|
|
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
|
|
else q = 0.0625;
|
|
if (q > (bigfloat)0.25) q = 0.25;
|
|
q *= mm[i+1] - mm[i];
|
|
step[i] = q * delta;
|
|
}
|
|
step[neq] = step[neq-1];
|
|
|
|
for (i = 0; i < neq; i++) { // Insert new locations for the zeros.
|
|
xm = xx[i] - step[i];
|
|
if (xm <= apstrt) continue;
|
|
if (xm >= apend) continue;
|
|
if (xm <= mm[i]) xm = (bigfloat)0.5 * (mm[i] + xx[i]);
|
|
if (xm >= mm[i+1]) xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
|
|
xx[i] = xm;
|
|
}
|
|
|
|
delete [] yy;
|
|
}
|
|
|
|
// Solve the equations
|
|
void AlgRemez::equations(void) {
|
|
bigfloat x, y, z;
|
|
int i, j, ip;
|
|
bigfloat *aa;
|
|
|
|
bigfloat *AA = new bigfloat[(neq)*(neq)];
|
|
bigfloat *BB = new bigfloat[neq];
|
|
|
|
for (i = 0; i < neq; i++) { // set up the equations for solution by simq()
|
|
ip = neq * i; // offset to 1st element of this row of matrix
|
|
x = xx[i]; // the guess for this row
|
|
y = func(x); // right-hand-side vector
|
|
|
|
z = (bigfloat)1l;
|
|
aa = AA+ip;
|
|
for (j = 0; j <= n; j++) {
|
|
*aa++ = z;
|
|
z *= x;
|
|
}
|
|
|
|
z = (bigfloat)1l;
|
|
for (j = 0; j < d; j++) {
|
|
*aa++ = -y * z;
|
|
z *= x;
|
|
}
|
|
BB[i] = y * z; // Right hand side vector
|
|
}
|
|
|
|
// Solve the simultaneous linear equations.
|
|
if (simq(AA, BB, param, neq)) {
|
|
std::cout<<"simq failed\n";
|
|
exit(0);
|
|
}
|
|
|
|
delete [] AA;
|
|
delete [] BB;
|
|
|
|
}
|
|
|
|
// Evaluate the rational form P(x)/Q(x) using coefficients
|
|
// from the solution vector param
|
|
bigfloat AlgRemez::approx(const bigfloat x) {
|
|
bigfloat yn, yd;
|
|
int i;
|
|
|
|
// Work backwards toward the constant term.
|
|
yn = param[n]; // Highest order numerator coefficient
|
|
for (i = n-1; i >= 0; i--) yn = x * yn + param[i];
|
|
yd = x + param[n+d]; // Highest degree coefficient = 1.0
|
|
for (i = n+d-1; i > n; i--) yd = x * yd + param[i];
|
|
|
|
return(yn/yd);
|
|
}
|
|
|
|
// Compute size and sign of the approximation error at x
|
|
bigfloat AlgRemez::getErr(bigfloat x, int *sign) {
|
|
bigfloat e, f;
|
|
|
|
f = func(x);
|
|
e = approx(x) - f;
|
|
if (f != 0) e /= f;
|
|
if (e < (bigfloat)0.0) {
|
|
*sign = -1;
|
|
e = -e;
|
|
}
|
|
else *sign = 1;
|
|
|
|
return(e);
|
|
}
|
|
|
|
// Calculate function required for the approximation.
|
|
bigfloat AlgRemez::func(const bigfloat x) {
|
|
|
|
bigfloat z = (bigfloat)power_num / (bigfloat)power_den;
|
|
bigfloat y;
|
|
|
|
if (x == (bigfloat)1.0) y = (bigfloat)1.0;
|
|
else y = pow_bf(x,z);
|
|
|
|
if (a_length > 0) {
|
|
bigfloat sum = 0l;
|
|
for (int j=0; j<a_length; j++) sum += a[j]*pow_bf(x,a_power[j]);
|
|
return y * exp_bf(sum);
|
|
} else {
|
|
return y;
|
|
}
|
|
|
|
}
|
|
|
|
// Solve the system AX=B
|
|
int AlgRemez::simq(bigfloat A[], bigfloat B[], bigfloat X[], int n) {
|
|
|
|
int i, j, ij, ip, ipj, ipk, ipn;
|
|
int idxpiv, iback;
|
|
int k, kp, kp1, kpk, kpn;
|
|
int nip, nkp, nm1;
|
|
bigfloat em, q, rownrm, big, size, pivot, sum;
|
|
bigfloat *aa;
|
|
|
|
// simq() work vector
|
|
int *IPS = new int[(neq) * sizeof(int)];
|
|
|
|
nm1 = n - 1;
|
|
// Initialize IPS and X
|
|
|
|
ij = 0;
|
|
for (i = 0; i < n; i++) {
|
|
IPS[i] = i;
|
|
rownrm = 0.0;
|
|
for(j = 0; j < n; j++) {
|
|
q = abs_bf(A[ij]);
|
|
if(rownrm < q) rownrm = q;
|
|
++ij;
|
|
}
|
|
if (rownrm == (bigfloat)0l) {
|
|
std::cout<<"simq rownrm=0\n";
|
|
delete [] IPS;
|
|
return(1);
|
|
}
|
|
X[i] = (bigfloat)1.0 / rownrm;
|
|
}
|
|
|
|
for (k = 0; k < nm1; k++) {
|
|
big = 0.0;
|
|
idxpiv = 0;
|
|
|
|
for (i = k; i < n; i++) {
|
|
ip = IPS[i];
|
|
ipk = n*ip + k;
|
|
size = abs_bf(A[ipk]) * X[ip];
|
|
if (size > big) {
|
|
big = size;
|
|
idxpiv = i;
|
|
}
|
|
}
|
|
|
|
if (big == (bigfloat)0l) {
|
|
std::cout<<"simq big=0\n";
|
|
delete [] IPS;
|
|
return(2);
|
|
}
|
|
if (idxpiv != k) {
|
|
j = IPS[k];
|
|
IPS[k] = IPS[idxpiv];
|
|
IPS[idxpiv] = j;
|
|
}
|
|
kp = IPS[k];
|
|
kpk = n*kp + k;
|
|
pivot = A[kpk];
|
|
kp1 = k+1;
|
|
for (i = kp1; i < n; i++) {
|
|
ip = IPS[i];
|
|
ipk = n*ip + k;
|
|
em = -A[ipk] / pivot;
|
|
A[ipk] = -em;
|
|
nip = n*ip;
|
|
nkp = n*kp;
|
|
aa = A+nkp+kp1;
|
|
for (j = kp1; j < n; j++) {
|
|
ipj = nip + j;
|
|
A[ipj] = A[ipj] + em * *aa++;
|
|
}
|
|
}
|
|
}
|
|
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
|
|
if (A[kpn] == (bigfloat)0l) {
|
|
std::cout<<"simq A[kpn]=0\n";
|
|
delete [] IPS;
|
|
return(3);
|
|
}
|
|
|
|
|
|
ip = IPS[0];
|
|
X[0] = B[ip];
|
|
for (i = 1; i < n; i++) {
|
|
ip = IPS[i];
|
|
ipj = n * ip;
|
|
sum = 0.0;
|
|
for (j = 0; j < i; j++) {
|
|
sum += A[ipj] * X[j];
|
|
++ipj;
|
|
}
|
|
X[i] = B[ip] - sum;
|
|
}
|
|
|
|
ipn = n * IPS[n-1] + n - 1;
|
|
X[n-1] = X[n-1] / A[ipn];
|
|
|
|
for (iback = 1; iback < n; iback++) {
|
|
//i goes (n-1),...,1
|
|
i = nm1 - iback;
|
|
ip = IPS[i];
|
|
nip = n*ip;
|
|
sum = 0.0;
|
|
aa = A+nip+i+1;
|
|
for (j= i + 1; j < n; j++)
|
|
sum += *aa++ * X[j];
|
|
X[i] = (X[i] - sum) / A[nip+i];
|
|
}
|
|
|
|
delete [] IPS;
|
|
return(0);
|
|
}
|
|
|
|
// Calculate the roots of the approximation
|
|
int AlgRemez::root() {
|
|
|
|
long i,j;
|
|
bigfloat x,dx=0.05;
|
|
bigfloat upper=1, lower=-100000;
|
|
bigfloat tol = 1e-20;
|
|
|
|
bigfloat *poly = new bigfloat[neq+1];
|
|
|
|
// First find the numerator roots
|
|
for (i=0; i<=n; i++) poly[i] = param[i];
|
|
|
|
for (i=n-1; i>=0; i--) {
|
|
roots[i] = rtnewt(poly,i+1,lower,upper,tol);
|
|
if (roots[i] == 0.0) {
|
|
std::cout<<"Failure to converge on root "<<i+1<<"/"<<n<<"\n";
|
|
return 0;
|
|
}
|
|
poly[0] = -poly[0]/roots[i];
|
|
for (j=1; j<=i; j++) poly[j] = (poly[j-1] - poly[j])/roots[i];
|
|
}
|
|
|
|
// Now find the denominator roots
|
|
poly[d] = 1l;
|
|
for (i=0; i<d; i++) poly[i] = param[n+1+i];
|
|
|
|
for (i=d-1; i>=0; i--) {
|
|
poles[i]=rtnewt(poly,i+1,lower,upper,tol);
|
|
if (poles[i] == 0.0) {
|
|
std::cout<<"Failure to converge on pole "<<i+1<<"/"<<d<<"\n";
|
|
return 0;
|
|
}
|
|
poly[0] = -poly[0]/poles[i];
|
|
for (j=1; j<=i; j++) poly[j] = (poly[j-1] - poly[j])/poles[i];
|
|
}
|
|
|
|
norm = param[n];
|
|
|
|
delete [] poly;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Evaluate the polynomial
|
|
bigfloat AlgRemez::polyEval(bigfloat x, bigfloat *poly, long size) {
|
|
bigfloat f = poly[size];
|
|
for (int i=size-1; i>=0; i--) f = f*x + poly[i];
|
|
return f;
|
|
}
|
|
|
|
// Evaluate the differential of the polynomial
|
|
bigfloat AlgRemez::polyDiff(bigfloat x, bigfloat *poly, long size) {
|
|
bigfloat df = (bigfloat)size*poly[size];
|
|
for (int i=size-1; i>0; i--) df = df*x + (bigfloat)i*poly[i];
|
|
return df;
|
|
}
|
|
|
|
|
|
// Newton's method to calculate roots
|
|
bigfloat AlgRemez::rtnewt(bigfloat *poly, long i, bigfloat x1,
|
|
bigfloat x2, bigfloat xacc) {
|
|
int j;
|
|
bigfloat df, dx, f, rtn;
|
|
|
|
rtn=(bigfloat)0.5*(x1+x2);
|
|
for (j=1; j<=JMAX;j++) {
|
|
f = polyEval(rtn, poly, i);
|
|
df = polyDiff(rtn, poly, i);
|
|
dx = f/df;
|
|
rtn -= dx;
|
|
if (abs_bf(dx) < xacc) return rtn;
|
|
}
|
|
std::cout<<"Maximum number of iterations exceeded in rtnewt\n";
|
|
return 0.0;
|
|
}
|
|
|
|
// Evaluate the partial fraction expansion of the rational function
|
|
// with res roots and poles poles. Result is overwritten on input
|
|
// arrays.
|
|
void AlgRemez::pfe(bigfloat *res, bigfloat *poles, bigfloat norm) {
|
|
int i,j,small;
|
|
bigfloat temp;
|
|
bigfloat *numerator = new bigfloat[n];
|
|
bigfloat *denominator = new bigfloat[d];
|
|
|
|
// Construct the polynomials explicitly
|
|
for (i=1; i<n; i++) {
|
|
numerator[i] = 0l;
|
|
denominator[i] = 0l;
|
|
}
|
|
numerator[0]=1l;
|
|
denominator[0]=1l;
|
|
|
|
for (j=0; j<n; j++) {
|
|
for (i=n-1; i>=0; i--) {
|
|
numerator[i] *= -res[j];
|
|
denominator[i] *= -poles[j];
|
|
if (i>0) {
|
|
numerator[i] += numerator[i-1];
|
|
denominator[i] += denominator[i-1];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert to proper fraction form.
|
|
// Fraction is now in the form 1 + n/d, where O(n)+1=O(d)
|
|
for (i=0; i<n; i++) numerator[i] -= denominator[i];
|
|
|
|
// Find the residues of the partial fraction expansion and absorb the
|
|
// coefficients.
|
|
for (i=0; i<n; i++) {
|
|
res[i] = 0l;
|
|
for (j=n-1; j>=0; j--) {
|
|
res[i] = poles[i]*res[i]+numerator[j];
|
|
}
|
|
for (j=n-1; j>=0; j--) {
|
|
if (i!=j) res[i] /= poles[i]-poles[j];
|
|
}
|
|
res[i] *= norm;
|
|
}
|
|
|
|
// res now holds the residues
|
|
j = 0;
|
|
for (i=0; i<n; i++) poles[i] = -poles[i];
|
|
|
|
// Move the ordering of the poles from smallest to largest
|
|
for (j=0; j<n; j++) {
|
|
small = j;
|
|
for (i=j+1; i<n; i++) {
|
|
if (poles[i] < poles[small]) small = i;
|
|
}
|
|
if (small != j) {
|
|
temp = poles[small];
|
|
poles[small] = poles[j];
|
|
poles[j] = temp;
|
|
temp = res[small];
|
|
res[small] = res[j];
|
|
res[j] = temp;
|
|
}
|
|
}
|
|
|
|
delete [] numerator;
|
|
delete [] denominator;
|
|
}
|
|
|
|
double AlgRemez::evaluateApprox(double x) {
|
|
return (double)approx((bigfloat)x);
|
|
}
|
|
|
|
double AlgRemez::evaluateInverseApprox(double x) {
|
|
return 1.0/(double)approx((bigfloat)x);
|
|
}
|
|
|
|
double AlgRemez::evaluateFunc(double x) {
|
|
return (double)func((bigfloat)x);
|
|
}
|
|
|
|
double AlgRemez::evaluateInverseFunc(double x) {
|
|
return 1.0/(double)func((bigfloat)x);
|
|
}
|
|
|
|
void AlgRemez::csv(std::ostream & os)
|
|
{
|
|
double lambda_low = apstrt;
|
|
double lambda_high= apend;
|
|
for (double x=lambda_low; x<lambda_high; x*=1.05) {
|
|
double f = evaluateFunc(x);
|
|
double r = evaluateApprox(x);
|
|
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
|
|
}
|
|
return;
|
|
}
|
|
|