mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
400 lines
14 KiB
C++
400 lines
14 KiB
C++
#ifndef GRID_CARTESIAN_H
|
|
#define GRID_CARTESIAN_H
|
|
|
|
#include <Grid.h>
|
|
#include <Grid_Communicator.h>
|
|
namespace Grid{
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
// Grid Support.
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class GridBase : public CartesianCommunicator {
|
|
public:
|
|
|
|
// Give Lattice access
|
|
template<class object> friend class Lattice;
|
|
|
|
GridBase(std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
|
|
|
|
|
|
//FIXME
|
|
// protected:
|
|
// Lattice wide random support. not yet fully implemented. Need seed strategy
|
|
// and one generator per site.
|
|
// std::default_random_engine generator;
|
|
// static std::mt19937 generator( 9 );
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Commicator provides information on the processor grid
|
|
//////////////////////////////////////////////////////////////////////
|
|
// unsigned long _ndimension;
|
|
// std::vector<int> _processors; // processor grid
|
|
// int _processor; // linear processor rank
|
|
// std::vector<int> _processor_coor; // linear processor rank
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Physics Grid information.
|
|
std::vector<int> _simd_layout; // Which dimensions get relayed out over simd lanes.
|
|
std::vector<int> _fdimensions;// Global dimensions of array prior to cb removal
|
|
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
|
|
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
|
|
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
|
|
std::vector<int> _ostride; // Outer stride for each dimension
|
|
std::vector<int> _istride; // Inner stride i.e. within simd lane
|
|
int _osites; // _isites*_osites = product(dimensions).
|
|
int _isites;
|
|
std::vector<int> _slice_block; // subslice information
|
|
std::vector<int> _slice_stride;
|
|
std::vector<int> _slice_nblock;
|
|
|
|
// Might need these at some point
|
|
// std::vector<int> _lstart; // local start of array in gcoors. _processor_coor[d]*_ldimensions[d]
|
|
// std::vector<int> _lend; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
|
|
|
|
public:
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Checkerboarding interface is virtual and overridden by
|
|
// GridCartesian / GridRedBlackCartesian
|
|
////////////////////////////////////////////////////////////////
|
|
virtual int CheckerBoarded(int dim)=0;
|
|
virtual int CheckerBoard(std::vector<int> site)=0;
|
|
virtual int CheckerBoardDestination(int source_cb,int shift)=0;
|
|
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
|
inline int CheckerBoardFromOindex (int Oindex){
|
|
std::vector<int> ocoor;
|
|
oCoorFromOindex(ocoor,Oindex);
|
|
int ss=0;
|
|
for(int d=0;d<_ndimension;d++){
|
|
ss=ss+ocoor[d];
|
|
}
|
|
return ss&0x1;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Local layout calculations
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
// These routines are key. Subdivide the linearised cartesian index into
|
|
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
|
|
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
|
|
//
|
|
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
|
|
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
|
|
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
|
|
// lanes are operated upon simultaneously.
|
|
|
|
virtual int oIndex(std::vector<int> &coor)
|
|
{
|
|
int idx=0;
|
|
// Works with either global or local coordinates
|
|
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
|
|
return idx;
|
|
}
|
|
inline int oIndexReduced(std::vector<int> &ocoor)
|
|
{
|
|
int idx=0;
|
|
// ocoor is already reduced so can eliminate the modulo operation
|
|
// for fast indexing and inline the routine
|
|
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
|
|
return idx;
|
|
}
|
|
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
|
|
coor.resize(_ndimension);
|
|
for(int d=0;d<_ndimension;d++){
|
|
coor[d] = Oindex % _rdimensions[d];
|
|
Oindex = Oindex / _rdimensions[d];
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////
|
|
// SIMD lane addressing
|
|
//////////////////////////////////////////////////////////
|
|
inline int iIndex(std::vector<int> &lcoor)
|
|
{
|
|
int idx=0;
|
|
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
|
|
return idx;
|
|
}
|
|
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
|
|
{
|
|
coor.resize(_ndimension);
|
|
for(int d=0;d<_ndimension;d++){
|
|
coor[d] = lane % _simd_layout[d];
|
|
lane = lane / _simd_layout[d];
|
|
}
|
|
}
|
|
inline int PermuteDim(int dimension){
|
|
return _simd_layout[dimension]>1;
|
|
}
|
|
inline int PermuteType(int dimension){
|
|
int permute_type=0;
|
|
for(int d=_ndimension-1;d>dimension;d--){
|
|
if (_simd_layout[d]>1 ) permute_type++;
|
|
}
|
|
return permute_type;
|
|
}
|
|
////////////////////////////////////////////////////////////////
|
|
// Array sizing queries
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
inline int iSites(void) { return _isites; };
|
|
inline int Nsimd(void) { return _isites; };// Synonymous with iSites
|
|
inline int oSites(void) { return _osites; };
|
|
inline int lSites(void) { return _isites*_osites; };
|
|
inline int gSites(void) { return _isites*_osites*_Nprocessors; };
|
|
inline int Nd (void) { return _ndimension;};
|
|
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
|
|
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
|
|
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
|
|
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Global addressing
|
|
////////////////////////////////////////////////////////////////
|
|
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
|
|
{
|
|
gcoor.resize(_ndimension);
|
|
std::vector<int> coor(_ndimension);
|
|
|
|
ProcessorCoorFromRank(rank,coor);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]&coor[mu];
|
|
|
|
iCoorFromIindex(coor,i_idx);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]&coor[mu];
|
|
|
|
oCoorFromOindex (coor,o_idx);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
|
|
|
|
}
|
|
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
|
|
{
|
|
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
|
|
if(CheckerBoarded(0)){
|
|
fcoor[0] = fcoor[0]*2+cb;
|
|
}
|
|
}
|
|
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
|
|
{
|
|
gcoor.resize(_ndimension);
|
|
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
|
|
}
|
|
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
|
|
{
|
|
pcoor.resize(_ndimension);
|
|
lcoor.resize(_ndimension);
|
|
for(int mu=0;mu<_ndimension;mu++){
|
|
pcoor[mu] = gcoor[mu]/_ldimensions[mu];
|
|
lcoor[mu] = gcoor[mu]%_ldimensions[mu];
|
|
}
|
|
}
|
|
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
|
|
{
|
|
std::vector<int> pcoor;
|
|
std::vector<int> lcoor;
|
|
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
|
|
rank = RankFromProcessorCoor(pcoor);
|
|
i_idx= iIndex(lcoor);
|
|
o_idx= oIndex(lcoor);
|
|
}
|
|
|
|
};
|
|
|
|
class GridCartesian: public GridBase {
|
|
|
|
public:
|
|
|
|
virtual int CheckerBoarded(int dim){
|
|
return 0;
|
|
}
|
|
virtual int CheckerBoard(std::vector<int> site){
|
|
return 0;
|
|
}
|
|
virtual int CheckerBoardDestination(int cb,int shift){
|
|
return 0;
|
|
}
|
|
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
|
|
return shift;
|
|
}
|
|
GridCartesian(std::vector<int> &dimensions,
|
|
std::vector<int> &simd_layout,
|
|
std::vector<int> &processor_grid
|
|
) : GridBase(processor_grid)
|
|
{
|
|
///////////////////////
|
|
// Grid information
|
|
///////////////////////
|
|
_ndimension = dimensions.size();
|
|
|
|
_fdimensions.resize(_ndimension);
|
|
_gdimensions.resize(_ndimension);
|
|
_ldimensions.resize(_ndimension);
|
|
_rdimensions.resize(_ndimension);
|
|
_simd_layout.resize(_ndimension);
|
|
|
|
_ostride.resize(_ndimension);
|
|
_istride.resize(_ndimension);
|
|
|
|
_osites = 1;
|
|
_isites = 1;
|
|
for(int d=0;d<_ndimension;d++){
|
|
_fdimensions[d] = dimensions[d]; // Global dimensions
|
|
_gdimensions[d] = _fdimensions[d]; // Global dimensions
|
|
_simd_layout[d] = simd_layout[d];
|
|
|
|
//FIXME check for exact division
|
|
|
|
// Use a reduced simd grid
|
|
_ldimensions[d]= _gdimensions[d]/_processors[d]; //local dimensions
|
|
_rdimensions[d]= _ldimensions[d]/_simd_layout[d]; //overdecomposition
|
|
_osites *= _rdimensions[d];
|
|
_isites *= _simd_layout[d];
|
|
|
|
// Addressing support
|
|
if ( d==0 ) {
|
|
_ostride[d] = 1;
|
|
_istride[d] = 1;
|
|
} else {
|
|
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
|
|
_istride[d] = _istride[d-1]*_simd_layout[d-1];
|
|
}
|
|
}
|
|
|
|
///////////////////////
|
|
// subplane information
|
|
///////////////////////
|
|
_slice_block.resize(_ndimension);
|
|
_slice_stride.resize(_ndimension);
|
|
_slice_nblock.resize(_ndimension);
|
|
|
|
int block =1;
|
|
int nblock=1;
|
|
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
|
|
|
|
for(int d=0;d<_ndimension;d++){
|
|
nblock/=_rdimensions[d];
|
|
_slice_block[d] =block;
|
|
_slice_stride[d]=_ostride[d]*_rdimensions[d];
|
|
_slice_nblock[d]=nblock;
|
|
block = block*_rdimensions[d];
|
|
}
|
|
|
|
};
|
|
};
|
|
|
|
// Specialise this for red black grids storing half the data like a chess board.
|
|
class GridRedBlackCartesian : public GridBase
|
|
{
|
|
public:
|
|
virtual int CheckerBoarded(int dim){
|
|
if( dim==0) return 1;
|
|
else return 0;
|
|
}
|
|
virtual int CheckerBoard(std::vector<int> site){
|
|
return (site[0]+site[1]+site[2]+site[3])&0x1;
|
|
}
|
|
|
|
// Depending on the cb of site, we toggle source cb.
|
|
// for block #b, element #e = (b, e)
|
|
// we need
|
|
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
|
|
|
|
if(dim != 0) return shift;
|
|
|
|
int fulldim =_fdimensions[0];
|
|
shift = (shift+fulldim)%fulldim;
|
|
|
|
// Probably faster with table lookup;
|
|
// or by looping over x,y,z and multiply rather than computing checkerboard.
|
|
int ocb=CheckerBoardFromOindex(osite);
|
|
|
|
if ( (source_cb+ocb)&1 ) {
|
|
return (shift)/2;
|
|
} else {
|
|
return (shift+1)/2;
|
|
}
|
|
}
|
|
|
|
virtual int CheckerBoardDestination(int source_cb,int shift){
|
|
if ((shift+_fdimensions[0])&0x1) {
|
|
return 1-source_cb;
|
|
} else {
|
|
return source_cb;
|
|
}
|
|
};
|
|
GridRedBlackCartesian(std::vector<int> &dimensions,
|
|
std::vector<int> &simd_layout,
|
|
std::vector<int> &processor_grid) : GridBase(processor_grid)
|
|
{
|
|
///////////////////////
|
|
// Grid information
|
|
///////////////////////
|
|
_ndimension = dimensions.size();
|
|
|
|
_fdimensions.resize(_ndimension);
|
|
_gdimensions.resize(_ndimension);
|
|
_ldimensions.resize(_ndimension);
|
|
_rdimensions.resize(_ndimension);
|
|
_simd_layout.resize(_ndimension);
|
|
|
|
_ostride.resize(_ndimension);
|
|
_istride.resize(_ndimension);
|
|
|
|
_osites = 1;
|
|
_isites = 1;
|
|
for(int d=0;d<_ndimension;d++){
|
|
_fdimensions[d] = dimensions[d];
|
|
_gdimensions[d] = _fdimensions[d];
|
|
if (d==0) _gdimensions[0] = _gdimensions[0]/2; // Remove a checkerboard
|
|
_ldimensions[d] = _gdimensions[d]/_processors[d];
|
|
|
|
// Use a reduced simd grid
|
|
_simd_layout[d] = simd_layout[d];
|
|
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
|
|
|
|
_osites *= _rdimensions[d];
|
|
_isites *= _simd_layout[d];
|
|
|
|
// Addressing support
|
|
if ( d==0 ) {
|
|
_ostride[d] = 1;
|
|
_istride[d] = 1;
|
|
} else {
|
|
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
|
|
_istride[d] = _istride[d-1]*_simd_layout[d-1];
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
// subplane information
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
_slice_block.resize(_ndimension);
|
|
_slice_stride.resize(_ndimension);
|
|
_slice_nblock.resize(_ndimension);
|
|
|
|
int block =1;
|
|
int nblock=1;
|
|
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
|
|
|
|
for(int d=0;d<_ndimension;d++){
|
|
nblock/=_rdimensions[d];
|
|
_slice_block[d] =block;
|
|
_slice_stride[d]=_ostride[d]*_rdimensions[d];
|
|
_slice_nblock[d]=nblock;
|
|
block = block*_rdimensions[d];
|
|
}
|
|
|
|
};
|
|
protected:
|
|
virtual int oIndex(std::vector<int> &coor)
|
|
{
|
|
int idx=_ostride[0]*((coor[0]/2)%_rdimensions[0]);
|
|
for(int d=1;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
|
|
return idx;
|
|
};
|
|
|
|
};
|
|
|
|
}
|
|
#endif
|