1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/lib/algorithms/iterative/ConjugateGradient.h
Peter Boyle d0e4673a3f Getting closer to having a wilson solver... introducing a first and untested
cut at Conjugate gradient. Also copied in Remez, Zolotarev, Chebyshev from
Mike Clark, Tony Kennedy and my BFM package respectively since we know we will
need these. I wanted the structure of

algorithms/approx
algorithms/iterative

etc.. to start taking shape.
2015-05-18 07:47:05 +01:00

96 lines
2.7 KiB
C++

#ifndef GRID_CONJUGATE_GRADIENT_H
#define GRID_CONJUGATE_GRADIENT_H
namespace Grid {
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
RealD Tolerance;
Integer MaxIterations;
ConjugateGradient(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
std::cout << Tolerance<<std::endl;
};
void operator() (HermitianOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD cp,c,a,d,b,ssq,qq,b_pred;
Field p(src);
Field mmp(src);
Field r(src);
//Initial residual computation & set up
RealD guess = norm2(psi);
Linop.OpAndNorm(psi,mmp,d,b);
r= src-mmp;
p= r;
a =norm2(p);
cp =a;
ssq=norm2(src);
std::cout <<std::setprecision(4)<< "ConjugateGradient: guess "<<guess<<std::endl;
std::cout <<std::setprecision(4)<< "ConjugateGradient: src "<<ssq <<std::endl;
std::cout <<std::setprecision(4)<< "ConjugateGradient: mp "<<d <<std::endl;
std::cout <<std::setprecision(4)<< "ConjugateGradient: mmp "<<b <<std::endl;
std::cout <<std::setprecision(4)<< "ConjugateGradient: r "<<cp <<std::endl;
std::cout <<std::setprecision(4)<< "ConjugateGradient: p "<<a <<std::endl;
RealD rsq = Tolerance* Tolerance*ssq;
//Check if guess is really REALLY good :)
if ( cp <= rsq ) {
return;
}
std::cout << std::setprecision(4)<< "ConjugateGradient: k=0 residual "<<cp<<" rsq"<<rsq<<std::endl;
int k;
for (k=1;k<=MaxIterations;k++){
c=cp;
Linop.OpAndNorm(p,mmp,d,qq);
a = c/d;
b_pred = a*(a*qq-d)/c;
cp = axpy_norm(r,mmp,r,-a);
b = cp/c;
// Fuse these loops ; should be really easy
psi= a*p+psi;
p = p*b+r;
std::cout << "Iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
// Stopping condition
if ( cp <= rsq ) {
Linop.Op(p,mmp);
p=mmp-src;
RealD mmpnorm = sqrt(norm2(mmp));
RealD psinorm = sqrt(norm2(psi));
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm/srcnorm;
std::cout<<"ConjugateGradient: true residual is "<<true_residual<<" sol "<<psinorm<<" src "<<srcnorm<<std::endl;
std::cout<<"ConjugateGradient: target residual was "<<Tolerance<<std::endl;
}
}
std::cout<<"ConjugateGradient did NOT converge"<<std::endl;
assert(0);
}
};
}
#endif