1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/lib/simd/Grid_empty.h
2016-04-15 13:17:42 -04:00

455 lines
11 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_empty.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//----------------------------------------------------------------------
/*! @file Grid_sse4.h
@brief Empty Optimization libraries for debugging
Using intrinsics
*/
// Time-stamp: <2015-06-09 14:28:02 neo>
//----------------------------------------------------------------------
namespace Grid {
namespace Optimization {
template<class vtype>
union uconv {
float f;
vtype v;
};
union u128f {
float v;
float f[4];
};
union u128d {
double v;
double f[2];
};
struct Vsplat{
//Complex float
inline u128f operator()(float a, float b){
u128f out;
out.f[0] = a;
out.f[1] = b;
out.f[2] = a;
out.f[3] = b;
return out;
}
// Real float
inline u128f operator()(float a){
u128f out;
out.f[0] = a;
out.f[1] = a;
out.f[2] = a;
out.f[3] = a;
return out;
}
//Complex double
inline u128d operator()(double a, double b){
u128d out;
out.f[0] = a;
out.f[1] = b;
return out;
}
//Real double
inline u128d operator()(double a){
u128d out;
out.f[0] = a;
out.f[1] = a;
return out;
}
//Integer
inline int operator()(Integer a){
return a;
}
};
struct Vstore{
//Float
inline void operator()(u128f a, float* F){
memcpy(F,a.f,4*sizeof(float));
}
//Double
inline void operator()(u128d a, double* D){
memcpy(D,a.f,2*sizeof(double));
}
//Integer
inline void operator()(int a, Integer* I){
I[0] = a;
}
};
struct Vstream{
//Float
inline void operator()(float * a, u128f b){
memcpy(a,b.f,4*sizeof(float));
}
//Double
inline void operator()(double * a, u128d b){
memcpy(a,b.f,2*sizeof(double));
}
};
struct Vset{
// Complex float
inline u128f operator()(Grid::ComplexF *a){
u128f out;
out.f[0] = a[0].real();
out.f[1] = a[0].imag();
out.f[2] = a[1].real();
out.f[3] = a[1].imag();
return out;
}
// Complex double
inline u128d operator()(Grid::ComplexD *a){
u128d out;
out.f[0] = a[0].real();
out.f[1] = a[0].imag();
return out;
}
// Real float
inline u128f operator()(float *a){
u128f out;
out.f[0] = a[0];
out.f[1] = a[1];
out.f[2] = a[2];
out.f[3] = a[3];
return out;
}
// Real double
inline u128d operator()(double *a){
u128d out;
out.f[0] = a[0];
out.f[1] = a[1];
return out;
}
// Integer
inline int operator()(Integer *a){
return a[0];
}
};
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
//Complex/Real float
inline u128f operator()(u128f a, u128f b){
u128f out;
out.f[0] = a.f[0] + b.f[0];
out.f[1] = a.f[1] + b.f[1];
out.f[2] = a.f[2] + b.f[2];
out.f[3] = a.f[3] + b.f[3];
return out;
}
//Complex/Real double
inline u128d operator()(u128d a, u128d b){
u128d out;
out.f[0] = a.f[0] + b.f[0];
out.f[1] = a.f[1] + b.f[1];
return out;
}
//Integer
inline int operator()(int a, int b){
return a + b;
}
};
struct Sub{
//Complex/Real float
inline u128f operator()(u128f a, u128f b){
u128f out;
out.f[0] = a.f[0] - b.f[0];
out.f[1] = a.f[1] - b.f[1];
out.f[2] = a.f[2] - b.f[2];
out.f[3] = a.f[3] - b.f[3];
return out;
}
//Complex/Real double
inline u128d operator()(u128d a, u128d b){
u128d out;
out.f[0] = a.f[0] - b.f[0];
out.f[1] = a.f[1] - b.f[1];
return out;
}
//Integer
inline int operator()(int a, int b){
return a-b;
}
};
struct MultComplex{
// Complex float
inline u128f operator()(u128f a, u128f b){
u128f out;
out.f[0] = a.f[0]*b.f[0] - a.f[1]*b.f[1];
out.f[1] = a.f[0]*b.f[1] + a.f[1]*b.f[0];
out.f[2] = a.f[2]*b.f[2] - a.f[3]*b.f[3];
out.f[3] = a.f[2]*b.f[3] + a.f[3]*b.f[2];
return out;
}
// Complex double
inline u128d operator()(u128d a, u128d b){
u128d out;
out.f[0] = a.f[0]*b.f[0] - a.f[1]*b.f[1];
out.f[1] = a.f[0]*b.f[1] + a.f[1]*b.f[0];
return out;
}
};
struct Mult{
//CK: Appear unneeded
// inline float mac(float a, float b,double c){
// return 0;
// }
// inline double mac(double a, double b,double c){
// return 0;
// }
// Real float
inline u128f operator()(u128f a, u128f b){
u128f out;
out.f[0] = a.f[0]*b.f[0];
out.f[1] = a.f[1]*b.f[1];
out.f[2] = a.f[2]*b.f[2];
out.f[3] = a.f[3]*b.f[3];
return out;
}
// Real double
inline u128d operator()(u128d a, u128d b){
u128d out;
out.f[0] = a.f[0]*b.f[0];
out.f[1] = a.f[1]*b.f[1];
return out;
}
// Integer
inline int operator()(int a, int b){
return a*b;
}
};
struct Conj{
// Complex single
inline u128f operator()(u128f in){
u128f out;
out.f[0] = in.f[0];
out.f[1] = -in.f[1];
out.f[2] = in.f[2];
out.f[3] = -in.f[3];
return out;
}
// Complex double
inline u128d operator()(u128d in){
u128d out;
out.f[0] = in.f[0];
out.f[1] = -in.f[1];
return out;
}
// do not define for integer input
};
struct TimesMinusI{
//Complex single
inline u128f operator()(u128f in, u128f ret){ //note ret is ignored
u128f out;
out.f[0] = in.f[1];
out.f[1] = -in.f[0];
out.f[2] = in.f[3];
out.f[3] = -in.f[2];
return out;
}
//Complex double
inline u128d operator()(u128d in, u128d ret){
u128d out;
out.f[0] = in.f[1];
out.f[1] = -in.f[0];
return out;
}
};
struct TimesI{
//Complex single
inline u128f operator()(u128f in, u128f ret){ //note ret is ignored
u128f out;
out.f[0] = -in.f[1];
out.f[1] = in.f[0];
out.f[2] = -in.f[3];
out.f[3] = in.f[2];
return out;
}
//Complex double
inline u128d operator()(u128d in, u128d ret){
u128d out;
out.f[0] = -in.f[1];
out.f[1] = in.f[0];
return out;
}
};
//////////////////////////////////////////////
// Some Template specialization
struct Permute{
//We just have to mirror the permutes of Grid_sse4.h
static inline u128f Permute0(u128f in){ //AB CD -> CD AB
u128f out;
out.f[0] = in.f[2];
out.f[1] = in.f[3];
out.f[2] = in.f[0];
out.f[3] = in.f[1];
return out;
};
static inline u128f Permute1(u128f in){ //AB CD -> BA DC
u128f out;
out.f[0] = in.f[1];
out.f[1] = in.f[0];
out.f[2] = in.f[3];
out.f[3] = in.f[2];
return out;
};
static inline u128f Permute2(u128f in){
return in;
};
static inline u128f Permute3(u128f in){
return in;
};
static inline u128d Permute0(u128d in){ //AB -> BA
u128d out;
out.f[0] = in.f[1];
out.f[1] = in.f[0];
return out;
};
static inline u128d Permute1(u128d in){
return in;
};
static inline u128d Permute2(u128d in){
return in;
};
static inline u128d Permute3(u128d in){
return in;
};
};
template < typename vtype >
void permute(vtype &a, vtype b, int perm) {
};
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, u128f>::operator()(u128f in){ //2 complex
return Grid::ComplexF(in.f[0] + in.f[2], in.f[1] + in.f[3]);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, u128f>::operator()(u128f in){ //4 floats
return in.f[0] + in.f[1] + in.f[2] + in.f[3];
}
//Complex double Reduce
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, u128d>::operator()(u128d in){ //1 complex
return Grid::ComplexD(in.f[0],in.f[1]);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, u128d>::operator()(u128d in){ //2 doubles
return in.f[0] + in.f[1];
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, int>::operator()(int in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
}
}
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::u128f SIMD_Ftype; // Single precision type
typedef Optimization::u128d SIMD_Dtype; // Double precision type
typedef int SIMD_Itype; // Integer type
// prefetch utilities
inline void v_prefetch0(int size, const char *ptr){};
inline void prefetch_HINT_T0(const char *ptr){};
// Gpermute function
template < typename VectorSIMD >
inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) {
Optimization::permute(y.v,b.v,perm);
}
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}