1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00
Grid/Grid/stencil/Stencil.h
2023-05-27 17:58:22 +03:00

1435 lines
47 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Stencil.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_STENCIL_H
#define GRID_STENCIL_H
#define STENCIL_MAX (16)
#include <Grid/stencil/SimpleCompressor.h> // subdir aggregate
#include <Grid/stencil/Lebesgue.h> // subdir aggregate
//////////////////////////////////////////////////////////////////////////////////////////
// Must not lose sight that goal is to be able to construct really efficient
// gather to a point stencil code. CSHIFT is not the best way, so need
// additional stencil support.
//
// Stencil based code will exchange haloes and use a table lookup for neighbours.
// This will be done with generality to allow easier efficient implementations.
// Overlap of comms and compute is enabled by tabulating off-node connected,
//
// Generic services
// 0) Prebuild neighbour tables
// 1) Compute sizes of all haloes/comms buffers; allocate them.
// 2) Gather all faces, and communicate.
// 3) Loop over result sites, giving nbr index/offnode info for each
//
//////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct DefaultImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;
DefaultImplParams() {
dirichlet.resize(0);
partialDirichlet=0;
};
};
///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split with compression
///////////////////////////////////////////////////////////////////
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
int off,std::vector<std::pair<int,int> > & table);
/*
template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so) __attribute__((noinline));
template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)
{
int num=table.size();
std::pair<int,int> *table_v = & table[0];
auto rhs_v = rhs.View(AcceleratorRead);
accelerator_forNB( i,num, vobj::Nsimd(), {
compress.Compress(buffer[off+table_v[i].first],rhs_v[so+table_v[i].second]);
});
rhs_v.ViewClose();
}
///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split with compression
///////////////////////////////////////////////////////////////////
template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(const Lattice<vobj> &rhs,
commVector<cobj *> pointers,
int dimension,int plane,
int cbmask,compressor &compress,int type) __attribute__((noinline));
template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
std::vector<cobj *> &pointers,int dimension,int plane,int cbmask,
compressor &compress,int type)
{
assert( (table.size()&0x1)==0);
int num=table.size()/2;
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead);
auto rhs_p = &rhs_v[0];
auto p0=&pointers[0][0];
auto p1=&pointers[1][0];
auto tp=&table[0];
accelerator_forNB(j, num, vobj::Nsimd(), {
compress.CompressExchange(p0,p1, rhs_p, j,
so+tp[2*j ].second,
so+tp[2*j+1].second,
type);
});
rhs_v.ViewClose();
}
*/
void DslashResetCounts(void);
void DslashGetCounts(uint64_t &dirichlet,uint64_t &partial,uint64_t &full);
void DslashLogFull(void);
void DslashLogPartial(void);
void DslashLogDirichlet(void);
struct StencilEntry {
#ifdef GRID_CUDA
uint64_t _byte_offset; // 8 bytes
uint32_t _offset; // 4 bytes
#else
uint64_t _byte_offset; // 8 bytes
uint64_t _offset; // 8 bytes (8 ever required?)
#endif
uint8_t _is_local; // 1 bytes
uint8_t _permute; // 1 bytes
uint8_t _around_the_world; // 1 bytes
uint8_t _pad; // 1 bytes
};
// Could pack to 8 + 4 + 4 = 128 bit and use
template<class vobj,class cobj,class Parameters>
class CartesianStencilAccelerator {
public:
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
// Stencil runs along coordinate axes only; NO diagonal fill in.
////////////////////////////////////////
// Basic Grid and stencil info
////////////////////////////////////////
int _checkerboard;
int _npoints; // Move to template param?
int _osites;
StencilVector _directions;
StencilVector _distances;
///////////////////////////////////////////////////
// If true, this is FULLY communicated per face
// Otherwise will either be full or partial dirichlet
///////////////////////////////////////////////////
StencilVector _comms_send;
StencilVector _comms_recv; // this is FULLY communicated per face
///////////////////////////////////////////////////
// If true, this is partially communicated per face
///////////////////////////////////////////////////
StencilVector _comms_partial_send;
StencilVector _comms_partial_recv;
//
StencilVector _comm_buf_size;
StencilVector _permute_type;
StencilVector same_node;
Coordinate _simd_layout;
Parameters parameters;
StencilEntry* _entries_p;
cobj* u_recv_buf_p;
cobj* u_send_buf_p;
accelerator_inline cobj *CommBuf(void) const { return u_recv_buf_p; }
accelerator_inline int GetNodeLocal(int osite,int point) const {
return this->_entries_p[point+this->_npoints*osite]._is_local;
}
accelerator_inline StencilEntry * GetEntry(int &ptype,int point,int osite) const {
ptype = this->_permute_type[point]; return & this->_entries_p[point+this->_npoints*osite];
}
accelerator_inline uint64_t GetInfo(int &ptype,int &local,int &perm,int point,int ent,uint64_t base) const {
uint64_t cbase = (uint64_t)&u_recv_buf_p[0];
local = this->_entries_p[ent]._is_local;
perm = this->_entries_p[ent]._permute;
if (perm) ptype = this->_permute_type[point];
if (local) {
return base + this->_entries_p[ent]._byte_offset;
} else {
return cbase + this->_entries_p[ent]._byte_offset;
}
}
accelerator_inline uint64_t GetPFInfo(int ent,uint64_t base) const {
uint64_t cbase = (uint64_t)&u_recv_buf_p[0];
int local = this->_entries_p[ent]._is_local;
if (local) return base + this->_entries_p[ent]._byte_offset;
else return cbase + this->_entries_p[ent]._byte_offset;
}
accelerator_inline void iCoorFromIindex(Coordinate &coor,int lane) const
{
Lexicographic::CoorFromIndex(coor,lane,this->_simd_layout);
}
};
template<class vobj,class cobj,class Parameters>
class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parameters>
{
public:
int *closed;
StencilEntry *cpu_ptr;
ViewMode mode;
public:
// default copy constructor
CartesianStencilView (const CartesianStencilView &refer_to_me) = default;
CartesianStencilView (const CartesianStencilAccelerator<vobj,cobj,Parameters> &refer_to_me,ViewMode _mode)
: CartesianStencilAccelerator<vobj,cobj,Parameters>(refer_to_me),
cpu_ptr(this->_entries_p),
mode(_mode)
{
this->_entries_p =(StencilEntry *)
MemoryManager::ViewOpen(this->_entries_p,
this->_npoints*this->_osites*sizeof(StencilEntry),
mode,
AdviseDefault);
}
void ViewClose(void)
{
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
}
};
////////////////////////////////////////
// The Stencil Class itself
////////////////////////////////////////
template<class vobj,class cobj,class Parameters>
class CartesianStencil : public CartesianStencilAccelerator<vobj,cobj,Parameters> { // Stencil runs along coordinate axes only; NO diagonal fill in.
public:
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_object scalar_object;
typedef const CartesianStencilView<vobj,cobj,Parameters> View_type;
typedef typename View_type::StencilVector StencilVector;
///////////////////////////////////////////
// Helper structs
///////////////////////////////////////////
struct Packet {
void * send_buf;
void * recv_buf;
Integer to_rank;
Integer from_rank;
Integer do_send;
Integer do_recv;
Integer xbytes;
Integer rbytes;
};
struct Merge {
static constexpr int Nsimd = vobj::Nsimd();
cobj * mpointer;
// std::vector<scalar_object *> rpointers;
std::vector<cobj *> vpointers;
Integer buffer_size;
Integer type;
Integer partial; // partial dirichlet BCs
Coordinate dims;
};
struct Decompress {
static constexpr int Nsimd = vobj::Nsimd();
cobj * kernel_p;
cobj * mpi_p;
Integer buffer_size;
Integer partial; // partial dirichlet BCs
Coordinate dims;
};
struct CopyReceiveBuffer {
void * from_p;
void * to_p;
Integer bytes;
};
struct CachedTransfer {
Integer direction;
Integer OrthogPlane;
Integer DestProc;
Integer xbytes;
Integer rbytes;
Integer lane;
Integer cb;
void *recv_buf;
};
protected:
GridBase * _grid;
public:
GridBase *Grid(void) const { return _grid; }
LebesgueOrder *lo;
////////////////////////////////////////////////////////////////////////
// Needed to conveniently communicate gparity parameters into GPU memory
// without adding parameters. Perhaps a template parameter to StenciView is
// required to pass general parameters.
// Generalise as required later if needed
////////////////////////////////////////////////////////////////////////
View_type View(ViewMode mode) const {
View_type accessor(*( (View_type *) this),mode);
return accessor;
}
int face_table_computed;
int partialDirichlet;
int fullDirichlet;
std::vector<commVector<std::pair<int,int> > > face_table ;
Vector<int> surface_list;
stencilVector<StencilEntry> _entries; // Resident in managed memory
commVector<StencilEntry> _entries_device; // Resident in managed memory
std::vector<Packet> Packets;
std::vector<Merge> Mergers;
std::vector<Merge> MergersSHM;
std::vector<Decompress> Decompressions;
std::vector<Decompress> DecompressionsSHM;
std::vector<CopyReceiveBuffer> CopyReceiveBuffers ;
std::vector<CachedTransfer> CachedTransfers;
std::vector<CommsRequest_t> MpiReqs;
///////////////////////////////////////////////////////////
// Unified Comms buffers for all directions
///////////////////////////////////////////////////////////
// Vectors that live on the symmetric heap in case of SHMEM
// These are used; either SHM objects or refs to the above symmetric heap vectors
// depending on comms target
std::vector<cobj *> u_simd_send_buf;
std::vector<cobj *> u_simd_recv_buf;
int u_comm_offset;
int _unified_buffer_size;
////////////////////////////////////////
// Stencil query
////////////////////////////////////////
#if 1
inline int SameNode(int point) {
int dimension = this->_directions[point];
int displacement = this->_distances[point];
int pd = _grid->_processors[dimension];
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
// int recv_from_rank;
// int xmit_to_rank;
if ( ! comm_dim ) return 1;
if ( displacement == 0 ) return 1;
return 0;
}
#else
// fancy calculation for shm code
inline int SameNode(int point) {
int dimension = this->_directions[point];
int displacement = this->_distances[point];
int pd = _grid->_processors[dimension];
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int recv_from_rank;
int xmit_to_rank;
if ( ! comm_dim ) return 1;
int nbr_proc;
if (displacement>0) nbr_proc = 1;
else nbr_proc = pd-1;
// FIXME this logic needs to be sorted for three link term
// assert( (displacement==1) || (displacement==-1));
// Present hack only works for >= 4^4 subvol per node
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
void *shm = (void *) _grid->ShmBufferTranslate(recv_from_rank,this->u_recv_buf_p);
if ( shm==NULL ) return 0;
return 1;
}
#endif
//////////////////////////////////////////
// Comms packet queue for asynch thread
// Use OpenMP Tasks for cleaner ???
// must be called *inside* parallel region
//////////////////////////////////////////
/*
void CommunicateThreaded()
{
#ifdef GRID_OMP
int mythread = omp_get_thread_num();
int nthreads = CartesianCommunicator::nCommThreads;
#else
int mythread = 0;
int nthreads = 1;
#endif
if (nthreads == -1) nthreads = 1;
if (mythread < nthreads) {
for (int i = mythread; i < Packets.size(); i += nthreads) {
uint64_t bytes = _grid->StencilSendToRecvFrom(Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes,i);
}
}
}
*/
////////////////////////////////////////////////////////////////////////
// Non blocking send and receive. Necessarily parallel.
////////////////////////////////////////////////////////////////////////
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
for(int i=0;i<Packets.size();i++){
_grid->StencilSendToRecvFromBegin(MpiReqs,
Packets[i].send_buf,
Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv,
Packets[i].xbytes,Packets[i].rbytes,i);
}
}
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
_grid->StencilSendToRecvFromComplete(MpiReqs,0);
if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet();
else DslashLogFull();
acceleratorCopySynchronise();
_grid->StencilBarrier();
}
////////////////////////////////////////////////////////////////////////
// Blocking send and receive. Either sequential or parallel.
////////////////////////////////////////////////////////////////////////
void Communicate(void)
{
/////////////////////////////////////////////////////////
// Concurrent and non-threaded asynch calls to MPI
/////////////////////////////////////////////////////////
std::vector<std::vector<CommsRequest_t> > reqs;
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
}
template<class compressor> void HaloExchange(const Lattice<vobj> &source,compressor &compress)
{
Prepare();
HaloGather(source,compress);
Communicate();
CommsMergeSHM(compress);
CommsMerge(compress);
}
template<class compressor> int HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
{
int dimension = this->_directions[point];
int displacement = this->_distances[point];
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
int shift = (displacement+fd)%fd;
assert (source.Checkerboard()== this->_checkerboard);
// the permute type
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int is_same_node = 1;
// Gather phase
int sshift [2];
if ( comm_dim ) {
sshift[0] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx,point);
is_same_node = is_same_node && tmp;
} else {
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx,point);
is_same_node = is_same_node && tmp;
}
} else {
if(splice_dim){
// if checkerboard is unfavourable take two passes
// both with block stride loop iteration
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx,point);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx,point);
is_same_node = is_same_node && tmp1 && tmp2;
} else {
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx,point);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx,point);
is_same_node = is_same_node && tmp1 && tmp2;
}
}
}
return is_same_node;
}
template<class compressor>
void HaloGather(const Lattice<vobj> &source,compressor &compress)
{
_grid->StencilBarrier();// Synch shared memory on a single nodes
assert(source.Grid()==_grid);
u_comm_offset=0;
// Gather all comms buffers
int face_idx=0;
for(int point = 0 ; point < this->_npoints; point++) {
compress.Point(point);
HaloGatherDir(source,compress,point,face_idx);
}
accelerator_barrier();
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
}
/////////////////////////
// Implementation
/////////////////////////
void Prepare(void)
{
Decompressions.resize(0);
DecompressionsSHM.resize(0);
Mergers.resize(0);
MergersSHM.resize(0);
Packets.resize(0);
CopyReceiveBuffers.resize(0);
CachedTransfers.resize(0);
MpiReqs.resize(0);
}
void AddCopy(void *from,void * to, Integer bytes)
{
CopyReceiveBuffer obj;
obj.from_p = from;
obj.to_p = to;
obj.bytes= bytes;
CopyReceiveBuffers.push_back(obj);
}
void CommsCopy()
{
// These are device resident MPI buffers.
for(int i=0;i<CopyReceiveBuffers.size();i++){
cobj *from=(cobj *)CopyReceiveBuffers[i].from_p;
cobj *to =(cobj *)CopyReceiveBuffers[i].to_p;
Integer words = CopyReceiveBuffers[i].bytes/sizeof(cobj);
accelerator_forNB(j, words, cobj::Nsimd(), {
coalescedWrite(to[j] ,coalescedRead(from [j]));
});
}
}
Integer CheckForDuplicate(Integer direction, Integer OrthogPlane, Integer DestProc, void *recv_buf,Integer lane,
Integer xbytes,Integer rbytes,
Integer cb)
{
CachedTransfer obj;
obj.direction = direction;
obj.OrthogPlane = OrthogPlane;
obj.DestProc = DestProc;
obj.recv_buf = recv_buf;
obj.lane = lane;
obj.xbytes = xbytes;
obj.rbytes = rbytes;
obj.cb = cb;
for(int i=0;i<CachedTransfers.size();i++){
if ( (CachedTransfers[i].direction ==direction)
&&(CachedTransfers[i].OrthogPlane==OrthogPlane)
&&(CachedTransfers[i].DestProc ==DestProc)
&&(CachedTransfers[i].xbytes ==xbytes)
&&(CachedTransfers[i].rbytes ==rbytes)
&&(CachedTransfers[i].lane ==lane)
&&(CachedTransfers[i].cb ==cb)
){
// FIXME worry about duplicate with partial compression
// Wont happen as DWF has no duplicates, but...
AddCopy(CachedTransfers[i].recv_buf,recv_buf,rbytes);
return 1;
}
}
CachedTransfers.push_back(obj);
return 0;
}
void AddPacket(void *xmit,void * rcv,
Integer to, Integer do_send,
Integer from, Integer do_recv,
Integer xbytes,Integer rbytes){
Packet p;
p.send_buf = xmit;
p.recv_buf = rcv;
p.to_rank = to;
p.from_rank= from;
p.do_send = do_send;
p.do_recv = do_recv;
p.xbytes = xbytes;
p.rbytes = rbytes;
// if (do_send) std::cout << GridLogMessage << " MPI packet to "<<to<< " of size "<<xbytes<<std::endl;
// if (do_recv) std::cout << GridLogMessage << " MPI packet from "<<from<< " of size "<<xbytes<<std::endl;
Packets.push_back(p);
}
void AddDecompress(cobj *k_p,cobj *m_p,Integer buffer_size,std::vector<Decompress> &dv) {
Decompress d;
d.partial = this->partialDirichlet;
d.dims = _grid->_fdimensions;
d.kernel_p = k_p;
d.mpi_p = m_p;
d.buffer_size = buffer_size;
dv.push_back(d);
}
void AddMerge(cobj *merge_p,std::vector<cobj *> &rpointers,Integer buffer_size,Integer type,std::vector<Merge> &mv) {
Merge m;
m.partial = this->partialDirichlet;
m.dims = _grid->_fdimensions;
m.type = type;
m.mpointer = merge_p;
m.vpointers= rpointers;
m.buffer_size = buffer_size;
mv.push_back(m);
}
template<class decompressor> void CommsMerge(decompressor decompress) {
CommsCopy();
CommsMerge(decompress,Mergers,Decompressions);
}
template<class decompressor> void CommsMergeSHM(decompressor decompress) {
assert(MergersSHM.size()==0);
assert(DecompressionsSHM.size()==0);
}
template<class decompressor>
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd)
{
for(int i=0;i<mm.size();i++){
decompressor::MergeFace(decompress,mm[i]);
}
for(int i=0;i<dd.size();i++){
decompressor::DecompressFace(decompress,dd[i]);
}
}
////////////////////////////////////////
// Set up routines
////////////////////////////////////////
void PrecomputeByteOffsets(void){
for(int i=0;i<_entries.size();i++){
if( _entries[i]._is_local ) {
_entries[i]._byte_offset = _entries[i]._offset*sizeof(vobj);
} else {
_entries[i]._byte_offset = _entries[i]._offset*sizeof(cobj);
}
}
};
// Move interior/exterior split into the generic stencil
// FIXME Explicit Ls in interface is a pain. Should just use a vol
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
this->same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!this->same_node[point]) ){
local = 0;
}
}
if(local == 0) {
for(int s=0;s<Ls;s++){
surface_list.push_back(site*Ls+s);
}
}
}
std::cout << "BuildSurfaceList size is "<<surface_list.size()<<std::endl;
}
/// Introduce a block structure and switch off comms on boundaries
void DirichletBlock(const Coordinate &dirichlet_block)
{
for(int ii=0;ii<this->_npoints;ii++){
int dimension = this->_directions[ii];
int displacement = this->_distances[ii];
int gd = _grid->_gdimensions[dimension];
int fd = _grid->_fdimensions[dimension];
int pd = _grid->_processors [dimension];
int pc = _grid->_processor_coor[dimension];
int ld = fd/pd;
///////////////////////////////////////////
// Figure out dirichlet send and receive
// on this leg of stencil.
///////////////////////////////////////////
int comm_dim = _grid->_processors[dimension] >1 ;
int block = dirichlet_block[dimension];
this->_comms_send[ii] = comm_dim;
this->_comms_recv[ii] = comm_dim;
this->_comms_partial_send[ii] = 0;
this->_comms_partial_recv[ii] = 0;
if ( block && comm_dim ) {
assert(abs(displacement) < ld );
// Quiesce communication across block boundaries
if( displacement > 0 ) {
// High side, low side
// | <--B--->|
// | | |
// noR
// noS
if ( ( (ld*(pc+1) ) % block ) == 0 ) this->_comms_recv[ii] = 0;
if ( ( (ld*pc ) % block ) == 0 ) this->_comms_send[ii] = 0;
} else {
// High side, low side
// | <--B--->|
// | | |
// noS
// noR
if ( ( (ld*(pc+1) ) % block ) == 0 ) this->_comms_send[ii] = 0;
if ( ( (ld*pc ) % block ) == 0 ) this->_comms_recv[ii] = 0;
}
if ( partialDirichlet ) {
this->_comms_partial_send[ii] = !this->_comms_send[ii];
this->_comms_partial_recv[ii] = !this->_comms_recv[ii];
}
}
}
}
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances,
Parameters p=Parameters())
{
face_table_computed=0;
_grid = grid;
this->parameters=p;
/////////////////////////////////////
// Initialise the base
/////////////////////////////////////
this->_npoints = npoints;
this->_comm_buf_size.resize(npoints),
this->_permute_type.resize(npoints),
this->_simd_layout = _grid->_simd_layout; // copy simd_layout to give access to Accelerator Kernels
this->_directions = StencilVector(directions);
this->_distances = StencilVector(distances);
this->_comms_send.resize(npoints);
this->_comms_recv.resize(npoints);
this->same_node.resize(npoints);
if ( p.dirichlet.size() ==0 ) p.dirichlet.resize(grid->Nd(),0);
partialDirichlet = p.partialDirichlet;
DirichletBlock(p.dirichlet); // comms send/recv set up
fullDirichlet=0;
for(int d=0;d<p.dirichlet.size();d++){
if (p.dirichlet[d]) fullDirichlet=1;
}
_unified_buffer_size=0;
surface_list.resize(0);
this->_osites = _grid->oSites();
_entries.resize(this->_npoints* this->_osites);
this->_entries_p = &_entries[0];
for(int ii=0;ii<npoints;ii++){
int i = ii; // reverse direction to get SIMD comms done first
int point = i;
int dimension = directions[i];
int displacement = distances[i];
int shift = displacement;
int gd = _grid->_gdimensions[dimension];
int fd = _grid->_fdimensions[dimension];
int pd = _grid->_processors [dimension];
// int ld = gd/pd;
int rd = _grid->_rdimensions[dimension];
int pc = _grid->_processor_coor[dimension];
this->_permute_type[point]=_grid->PermuteType(dimension);
this->_checkerboard = checkerboard;
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int rotate_dim = _grid->_simd_layout[dimension]>2;
assert ( (rotate_dim && comm_dim) == false) ; // Do not think spread out is supported
int sshift[2];
//////////////////////////
// Underlying approach. For each local site build
// up a table containing the npoint "neighbours" and whether they
// live in lattice or a comms buffer.
//////////////////////////
if ( !comm_dim ) {
sshift[0] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Local(point,dimension,shift,0x3);
} else {
Local(point,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Local(point,dimension,shift,0x2);// both with block stride loop iteration
}
} else {
// All permute extract done in comms phase prior to Stencil application
// So tables are the same whether comm_dim or splice_dim
sshift[0] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Comms(point,dimension,shift,0x3);
} else {
Comms(point,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Comms(point,dimension,shift,0x2);// both with block stride loop iteration
}
}
}
/////////////////////////////////////////////////////////////////////////////////
// Try to allocate for receiving in a shared memory region, fall back to buffer
/////////////////////////////////////////////////////////////////////////////////
const int Nsimd = grid->Nsimd();
_grid->ShmBufferFreeAll();
int maxl=2;
u_simd_send_buf.resize(maxl);
u_simd_recv_buf.resize(maxl);
this->u_send_buf_p=(cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
this->u_recv_buf_p=(cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
for(int l=0;l<maxl;l++){
u_simd_recv_buf[l] = (cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
u_simd_send_buf[l] = (cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
}
PrecomputeByteOffsets();
}
void Local (int point, int dimension,int shiftpm,int cbmask)
{
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int gd = _grid->_gdimensions[dimension];
int ly = _grid->_simd_layout[dimension];
// Map to always positive shift modulo global full dimension.
int shift = (shiftpm+fd)%fd;
// the permute type
int permute_dim =_grid->PermuteDim(dimension);
for(int x=0;x<rd;x++){
// int o = 0;
int bo = x * _grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,cb);
int sx = (x+sshift)%rd;
int wraparound=0;
if ( (shiftpm==-1) && (sx>x) ) {
wraparound = 1;
}
if ( (shiftpm== 1) && (sx<x) ) {
wraparound = 1;
}
int permute_slice=0;
if(permute_dim){
int wrap = sshift/rd; wrap=wrap % ly; // but it is local anyway
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = (wrap+1)%ly;
}
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
}
}
void Comms (int point,int dimension,int shiftpm,int cbmask)
{
GridBase *grid=_grid;
const int Nsimd = grid->Nsimd();
int comms_recv = this->_comms_recv[point] || this->_comms_partial_recv[point] ;
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(comm_dim==1);
int shift = (shiftpm + fd) %fd;
assert(shift>=0);
assert(shift<fd);
// done in reduced dims, so SIMD factored
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
this->_comm_buf_size[point] = buffer_size; // Size of _one_ plane. Multiple planes may be gathered and
// send to one or more remote nodes.
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(this->_checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
int permute_type=grid->PermuteType(dimension);
int permute_slice;
int sx = (x+sshift)%rd;
int offnode = 0;
if ( simd_layout > 1 ) {
permute_slice=1;
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
if ( nbr_proc ) {
offnode =1;
}
}
} else {
int comm_proc = ((x+sshift)/rd)%pd;
offnode = (comm_proc!= 0);
permute_slice=0;
}
int wraparound=0;
if ( (shiftpm==-1) && (sx>x) && (grid->_processor_coor[dimension]==0) ) {
wraparound = 1;
}
if ( (shiftpm== 1) && (sx<x) && (grid->_processor_coor[dimension]==grid->_processors[dimension]-1) ) {
wraparound = 1;
}
// Wrap locally dirichlet support case OR node local
if ( offnode==0 ) {
permute_slice=0;
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
} else {
if ( comms_recv ) {
ScatterPlane(point,dimension,x,cbmask,_unified_buffer_size,wraparound); // permute/extract/merge is done in comms phase
} else {
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
}
}
if ( offnode ) {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
_unified_buffer_size += words;
}
}
}
// Routine builds up integer table for each site in _offsets, _is_local, _permute
void CopyPlane(int point, int dimension,int lplane,int rplane,int cbmask,int permute,int wrap)
{
int rd = _grid->_rdimensions[dimension];
if ( !_grid->CheckerBoarded(dimension) ) {
int o = 0; // relative offset to base within plane
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // offset in buffer
// Simple block stride gather of SIMD objects
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int idx=point+(lo+o+b)*this->_npoints;
_entries[idx]._offset =ro+o+b;
_entries[idx]._permute=permute;
_entries[idx]._is_local=1;
_entries[idx]._around_the_world=wrap;
}
o +=_grid->_slice_stride[dimension];
}
} else {
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int ocb=1<<_grid->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) {
int idx = point+(lo+o+b)*this->_npoints;
_entries[idx]._offset =ro+o+b;
_entries[idx]._is_local=1;
_entries[idx]._permute=permute;
_entries[idx]._around_the_world=wrap;
}
}
o +=_grid->_slice_stride[dimension];
}
}
}
// Routine builds up integer table for each site in _offsets, _is_local, _permute
void ScatterPlane (int point,int dimension,int plane,int cbmask,int offset, int wrap)
{
int rd = _grid->_rdimensions[dimension];
if ( !_grid->CheckerBoarded(dimension) ) {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
int bo = 0; // offset in buffer
// Simple block stride gather of SIMD objects
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int idx=point+(so+o+b)*this->_npoints;
_entries[idx]._offset =offset+(bo++);
_entries[idx]._is_local=0;
_entries[idx]._permute=0;
_entries[idx]._around_the_world=wrap;
}
o +=_grid->_slice_stride[dimension];
}
} else {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
int bo = 0; // offset in buffer
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int ocb=1<<_grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
int idx = point+(so+o+b)*this->_npoints;
_entries[idx]._offset =offset+(bo++);
_entries[idx]._is_local=0;
_entries[idx]._permute =0;
_entries[idx]._around_the_world=wrap;
}
}
o +=_grid->_slice_stride[dimension];
}
}
}
template<class compressor>
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx, int point)
{
typedef typename cobj::vector_type vector_type;
int comms_send = this->_comms_send[point];
int comms_recv = this->_comms_recv[point];
int comms_partial_send = this->_comms_partial_send[point] ;
int comms_partial_recv = this->_comms_partial_recv[point] ;
assert(rhs.Grid()==_grid);
// conformable(_grid,rhs.Grid());
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc) {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * compress.CommDatumSize();
int xbytes;
int rbytes;
if ( comms_send ) xbytes = bytes; // Full send
else if ( comms_partial_send ) xbytes = bytes/compressor::PartialCompressionFactor(_grid);
else xbytes = 0; // full dirichlet
if ( comms_recv ) rbytes = bytes;
else if ( comms_partial_recv ) rbytes = bytes/compressor::PartialCompressionFactor(_grid);
else rbytes = 0;
int so = sx*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int comm_off = u_comm_offset;
int recv_from_rank;
int xmit_to_rank;
cobj *recv_buf;
cobj *send_buf;
_grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
assert (xmit_to_rank != _grid->ThisRank());
assert (recv_from_rank != _grid->ThisRank());
if ( !face_table_computed ) {
face_table.resize(face_idx+1);
std::vector<std::pair<int,int> > face_table_host ;
Gather_plane_table_compute ((GridBase *)_grid,dimension,sx,cbmask,comm_off,face_table_host);
// std::cout << "bytes expect "<< bytes << " " << face_table_host.size()* compress.CommDatumSize()<<std::endl;
face_table[face_idx].resize(face_table_host.size());
acceleratorCopyToDevice(&face_table_host[0],
&face_table[face_idx][0],
face_table[face_idx].size()*sizeof(face_table_host[0]));
}
if ( (compress.DecompressionStep()&&comms_recv) || comms_partial_recv ) {
recv_buf=u_simd_recv_buf[0];
} else {
recv_buf=this->u_recv_buf_p;
}
// potential SHM fast path for intranode
int shm_send=0;
int shm_recv=0;
#ifdef SHM_FAST_PATH
// Put directly in place if we can
send_buf = (cobj *)_grid->ShmBufferTranslate(xmit_to_rank,recv_buf);
if ( (send_buf==NULL) ) {
shm_send=0;
send_buf = this->u_send_buf_p;
} else {
shm_send=1;
}
void *test_ptr = _grid->ShmBufferTranslate(recv_from_rank,recv_buf);
if ( test_ptr != NULL ) shm_recv = 1;
// static int printed;
// if (!printed){
// std::cout << " GATHER FAST PATH SHM "<<shm_send<< " "<<shm_recv<<std::endl;
// printed = 1;
// }
#else
////////////////////////////////////////////////////////
// Gather locally
////////////////////////////////////////////////////////
send_buf = this->u_send_buf_p; // Gather locally, must send
assert(send_buf!=NULL);
#endif
// std::cout << " GatherPlaneSimple partial send "<< comms_partial_send<<std::endl;
compressor::Gather_plane_simple(face_table[face_idx],rhs,send_buf,compress,comm_off,so,comms_partial_send);
int duplicate = CheckForDuplicate(dimension,sx,comm_proc,(void *)&recv_buf[comm_off],0,xbytes,rbytes,cbmask);
if ( !duplicate ) { // Force comms for now
///////////////////////////////////////////////////////////
// Build a list of things to do after we synchronise GPUs
// Start comms now???
///////////////////////////////////////////////////////////
int do_send = (comms_send|comms_partial_send) && (!shm_send );
int do_recv = (comms_send|comms_partial_send) && (!shm_recv );
AddPacket((void *)&send_buf[comm_off],
(void *)&recv_buf[comm_off],
xmit_to_rank, do_send,
recv_from_rank, do_recv,
xbytes,rbytes);
}
if ( (compress.DecompressionStep() && comms_recv) || comms_partial_recv ) {
AddDecompress(&this->u_recv_buf_p[comm_off],
&recv_buf[comm_off],
words,Decompressions);
}
u_comm_offset+=words;
face_idx++;
}
}
return 0;
}
template<class compressor>
int GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx,int point)
{
const int Nsimd = _grid->Nsimd();
const int maxl =2;// max layout in a direction
int comms_send = this->_comms_send[point];
int comms_recv = this->_comms_recv[point];
int comms_partial_send = this->_comms_partial_send[point] ;
int comms_partial_recv = this->_comms_partial_recv[point] ;
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(comm_dim==1);
// This will not work with a rotate dim
assert(simd_layout==maxl);
assert(shift>=0);
assert(shift<fd);
int permute_type=_grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
// int words = sizeof(cobj)/sizeof(vector_type);
assert(cbmask==0x3); // Fixme think there is a latent bug if not true
// This assert will trap it if ever hit. Not hit normally so far
int reduced_buffer_size = buffer_size;
if (cbmask != 0x3) reduced_buffer_size=buffer_size>>1;
int datum_bytes = compress.CommDatumSize();
int bytes = (reduced_buffer_size*datum_bytes)/simd_layout;
// how many bytes on wire : partial dirichlet or dirichlet may set to < bytes
int xbytes;
int rbytes;
assert(bytes*simd_layout == reduced_buffer_size*datum_bytes);
std::vector<cobj *> rpointers(maxl);
std::vector<cobj *> spointers(maxl);
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
int any_offnode = ( ((x+sshift)%fd) >= rd );
if ( any_offnode ) {
int comm_off = u_comm_offset;
for(int i=0;i<maxl;i++){
spointers[i] = (cobj *) &u_simd_send_buf[i][comm_off];
}
int sx = (x+sshift)%rd;
if ( !face_table_computed ) {
face_table.resize(face_idx+1);
std::vector<std::pair<int,int> > face_table_host ;
Gather_plane_table_compute ((GridBase *)_grid,dimension,sx,cbmask,comm_off,face_table_host);
face_table[face_idx].resize(face_table_host.size());
acceleratorCopyToDevice(&face_table_host[0],
&face_table[face_idx][0],
face_table[face_idx].size()*sizeof(face_table_host[0]));
}
if ( comms_send ) xbytes = bytes;
else if ( comms_partial_send ) xbytes = bytes/compressor::PartialCompressionFactor(_grid);
else xbytes = 0;
if ( comms_recv ) rbytes = bytes;
else if ( comms_partial_recv ) rbytes = bytes/compressor::PartialCompressionFactor(_grid);
else rbytes = 0;
// Gathers SIMD lanes for send and merge
// Different faces can be full comms or partial comms with multiple ranks per node
if ( comms_send || comms_recv||comms_partial_send||comms_partial_recv ) {
int partial = partialDirichlet;
compressor::Gather_plane_exchange(face_table[face_idx],rhs,
spointers,dimension,sx,cbmask,
compress,permute_type,partial );
}
face_idx++;
//spointers[0] -- low simd coor
//spointers[1] -- high simd coor
for(int i=0;i<maxl;i++){
int my_coor = rd*i + x; // self explanatory
int nbr_coor = my_coor+sshift; // self explanatory
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_lcoor= (nbr_coor%ld); // local plane coor on neighbour node
int nbr_ic = (nbr_lcoor)/rd; // inner coord of peer simd lane "i"
int nbr_ox = (nbr_lcoor%rd); // outer coord of peer "x"
int nbr_plane = nbr_ic;
assert (sx == nbr_ox);
auto rp = &u_simd_recv_buf[i ][comm_off];
auto sp = &u_simd_send_buf[nbr_plane][comm_off];
if(nbr_proc){
int recv_from_rank;
int xmit_to_rank;
int shm_send=0;
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
#ifdef SHM_FAST_PATH
#warning STENCIL SHM FAST PATH SELECTED
int shm_recv=0;
// shm == receive pointer if offnode
// shm == Translate[send pointer] if on node -- my view of his send pointer
cobj *shm = (cobj *) _grid->ShmBufferTranslate(recv_from_rank,sp);
if (shm==NULL) {
shm = rp;
// we found a packet that comes from MPI and contributes to this shift.
// is_same_node is only used in the WilsonStencil, and gets set for this point in the stencil.
// Kernel will add the exterior_terms except if is_same_node.
// leg of stencil
shm_recv=0;
} else {
shm_recv=1;
}
rpointers[i] = shm;
// Test send side
void *test_ptr = (void *) _grid->ShmBufferTranslate(xmit_to_rank,sp);
if ( test_ptr != NULL ) shm_send = 1;
// static int printed;
// if (!printed){
// std::cout << " GATHERSIMD FAST PATH SHM "<<shm_send<< " "<<shm_recv<<std::endl;
// printed = 1;
// }
#else
rpointers[i] = rp;
#endif
int duplicate = CheckForDuplicate(dimension,sx,nbr_proc,(void *)rp,i,xbytes,rbytes,cbmask);
if ( !duplicate ) {
if ( (bytes != rbytes) && (rbytes!=0) ){
acceleratorMemSet(rp,0,bytes); // Zero prefill comms buffer to zero
}
int do_send = (comms_send|comms_partial_send) && (!shm_send );
AddPacket((void *)sp,(void *)rp,
xmit_to_rank,do_send,
recv_from_rank,do_send,
xbytes,rbytes);
}
} else {
rpointers[i] = sp;
}
}
// rpointer may be doing a remote read in the gather over SHM
if ( comms_recv|comms_partial_recv ) {
AddMerge(&this->u_recv_buf_p[comm_off],rpointers,reduced_buffer_size,permute_type,Mergers);
}
u_comm_offset +=buffer_size;
}
}
return 0;
}
};
NAMESPACE_END(Grid);
#endif