mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-13 01:05:36 +00:00
320 lines
11 KiB
C++
320 lines
11 KiB
C++
/*************************************************************************************
|
||
|
||
Grid physics library, www.github.com/paboyle/Grid
|
||
|
||
Source file: lib/algorithms/iterative/GeneralisedMinimalResidual.h
|
||
|
||
Copyright (C) 2015
|
||
Copyright (C) 2016
|
||
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
||
See the full license in the file "LICENSE" in the top level distribution
|
||
directory
|
||
*************************************************************************************/
|
||
/* END LEGAL */
|
||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||
|
||
// from Y. Saad - Iterative Methods for Sparse Linear Systems, PP 172
|
||
// Compute r0 = b − Ax0 , β := ||r0||2 , and v1 := r0 /β
|
||
// For j = 1, 2, ..., m Do:
|
||
// Compute wj := Avj
|
||
// For i = 1, ..., j Do:
|
||
// hij := (wj , vi)
|
||
// wj := wj − hij vi
|
||
// EndDo
|
||
// hj+1,j = ||wj||2 . If hj+1,j = 0 set m := j and go to HERE
|
||
// vj+1 = wj /hj+1,j
|
||
// EndDo
|
||
// Define the (m + 1) × m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. [HERE]
|
||
// Compute ym the minimizer of ||βe1 − H̄m y||2 and xm = x0 + Vm ym.
|
||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// want to solve Ax = b -> A = LinOp, psi = x, b = src
|
||
|
||
namespace Grid {
|
||
|
||
template<class Field>
|
||
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||
public:
|
||
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||
// defaults to True.
|
||
RealD Tolerance;
|
||
Integer MaxIterations;
|
||
Integer IterationsToComplete; // Number of iterations the GMRES took to
|
||
// finish. Filled in upon completion
|
||
|
||
GeneralisedMinimalResidual(RealD tol,
|
||
Integer maxit,
|
||
bool err_on_no_conv = true)
|
||
: Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
|
||
|
||
// want to solve Ax = b -> A = LinOp, psi = x, b = src
|
||
|
||
/* void */
|
||
/* operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi)
|
||
* { */
|
||
/* typedef typename Eigen::MatrixXcd MyMatrix; */
|
||
/* typedef typename Eigen::VectorXcd MyVector; */
|
||
|
||
/* Field r(src); */
|
||
/* Field w(src); */
|
||
/* Field mmv(src); */
|
||
|
||
/* std::vector<Field> V(MaxIterations + 1, src); */
|
||
/* std::vector<std::complex<double>> y(MaxIterations + 1, 0.); */
|
||
/* std::vector<std::complex<double>> gamma(MaxIterations + 1, 0.); */
|
||
/* std::vector<std::complex<double>> c(MaxIterations + 1, 0.); */
|
||
/* std::vector<std::complex<double>> s(MaxIterations + 1, 0.); */
|
||
|
||
/* int m = MaxIterations; */
|
||
|
||
/* RealD gamma0{}; */
|
||
|
||
/* MyMatrix H = Eigen::MatrixXcd::Zero(MaxIterations + 1, MaxIterations); */
|
||
|
||
/* RealD normPsiSq = norm2(psi); */
|
||
/* RealD normSrcSq = norm2(src); */
|
||
/* RealD TargetResSq = Tolerance * Tolerance * normSrcSq; */
|
||
|
||
/* LinOp.Op(psi, mmv); */
|
||
|
||
/* r = src - mmv; */
|
||
/* gamma[0] = norm2(r); */
|
||
/* std::cout << gamma[0] << std::endl; */
|
||
/* gamma0 = std::real(gamma[0]); */
|
||
/* V[0] = (1. / gamma[0]) * r; */
|
||
|
||
/* std::cout << GridLogMessage << std::setprecision(4) */
|
||
/* << "GeneralisedMinimalResidual: psi " << normPsiSq */
|
||
/* << std::endl; */
|
||
/* std::cout << GridLogMessage << std::setprecision(4) */
|
||
/* << "GeneralisedMinimalResidual: src " << normSrcSq */
|
||
/* << std::endl; */
|
||
/* std::cout << GridLogMessage << std::setprecision(4) */
|
||
/* << "GeneralisedMinimalResidual: target " << TargetResSq */
|
||
/* << std::endl; */
|
||
/* std::cout << GridLogMessage << std::setprecision(4) */
|
||
/* << "GeneralisedMinimalResidual: r " << gamma0 <<
|
||
* std::endl; */
|
||
|
||
/* std::cout */
|
||
/* << GridLogIterative << std::setprecision(4) */
|
||
/* << "GeneralisedMinimalResidual: before starting to iterate residual "
|
||
*/
|
||
/* << gamma0 << " target " << TargetResSq << std::endl; */
|
||
|
||
/* for(auto j = 0; j < m; ++j) { */
|
||
/* LinOp.Op(V[j], w); */
|
||
|
||
/* for(auto i = 0; i <= j; ++i) { */
|
||
/* H(i, j) = innerProduct(V[i], w); */
|
||
/* w = w - H(i, j) * V[i]; */
|
||
/* } */
|
||
|
||
/* H(j + 1, j) = norm2(w); */
|
||
/* V[j + 1] = (1. / H(j + 1, j)) * w; */
|
||
|
||
/* if(std::abs(H(j + 1, j)) > 1e-15) { */
|
||
/* qrUpdate(gamma, c, s, H, j); */
|
||
/* } */
|
||
|
||
/* /\* std::cout << GridLogMessage << "GeneralisedMinimalResidual: H( "
|
||
* *\/ */
|
||
/* /\* << j + 1 << "," << j << " ) = " << H( j + 1, j ) *\/ */
|
||
/* /\* << std::endl; *\/ */
|
||
|
||
/* std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration
|
||
* " */
|
||
/* << j << " residual " << std::abs(gamma[j + 1]) << " target "
|
||
*/
|
||
/* << TargetResSq << std::endl; */
|
||
/* if(std::abs(gamma[j + 1]) / gamma0 < Tolerance) { */
|
||
/* IterationsToComplete = j; */
|
||
/* break; */
|
||
/* } */
|
||
/* } */
|
||
/* computeSolution(y, gamma, H, V, psi, IterationsToComplete); */
|
||
/* std::cout << GridLogMessage */
|
||
/* << "GeneralisedMinimalResidual: End of operator() after " */
|
||
/* << IterationsToComplete << " iterations" << std::endl; */
|
||
|
||
/* RealD normSrc = sqrt(normSrcSq); */
|
||
/* RealD resnorm = sqrt(norm2(mmv)); */
|
||
/* RealD true_residual = resnorm / srcnorm; */
|
||
/* Field result = mmv; */
|
||
/* Field Dx(src); */
|
||
/* Field tmp(src); */
|
||
|
||
/* // Test the correctness */
|
||
/* LinOp.Op(result, Dx); */
|
||
|
||
/* tmp = Dx - src; */
|
||
|
||
/* std::cout << norm2(tmp) << " " << norm2(tmp) / gamma0 << std::endl; */
|
||
/* } */
|
||
|
||
void
|
||
operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||
std::cout << "GMRES: Start of operator()" << std::endl;
|
||
|
||
int m = MaxIterations;
|
||
|
||
Field r(src);
|
||
Field w(src);
|
||
Field Dpsi(src);
|
||
Field Dv(src);
|
||
|
||
std::vector<Field> v(m + 1, src);
|
||
Eigen::MatrixXcd H = Eigen::MatrixXcd::Zero(m + 1, m);
|
||
|
||
std::vector<std::complex<double>> y(m + 1, 0.);
|
||
std::vector<std::complex<double>> gamma(m + 1, 0.);
|
||
std::vector<std::complex<double>> c(m + 1, 0.);
|
||
std::vector<std::complex<double>> s(m + 1, 0.);
|
||
|
||
LinOp.Op(psi, Dpsi);
|
||
r = src - Dpsi;
|
||
|
||
RealD beta = norm2(r);
|
||
gamma[0] = beta;
|
||
|
||
std::cout << "beta " << beta << std::endl;
|
||
|
||
v[0] = (1. / beta) * r;
|
||
|
||
// Begin iterating
|
||
for(auto j = 0; j < m; ++j) {
|
||
LinOp.Op(v[j], Dv);
|
||
w = Dv;
|
||
|
||
for(auto i = 0; i <= j; ++i) {
|
||
H(i, j) = innerProduct(v[i], w);
|
||
w = w - H(i, j) * v[i];
|
||
}
|
||
|
||
H(j + 1, j) = norm2(w);
|
||
v[j + 1] = (1. / H(j + 1, j)) * w;
|
||
|
||
// end of arnoldi process, begin of givens rotations
|
||
// apply old Givens rotation
|
||
for(auto i = 0; i < j ; ++i) {
|
||
auto tmp = -s[i] * H(i, j) + c[i] * H(i + 1, j);
|
||
H(i, j) = std::conj(c[i]) * H(i, j) + std::conj(s[i]) * H(i + 1, j);
|
||
H(i + 1, j) = tmp;
|
||
}
|
||
|
||
// compute new Givens Rotation
|
||
ComplexD nu = sqrt(std::norm(H(j, j)) + std::norm(H(j + 1, j)));
|
||
c[j] = H(j, j) / nu;
|
||
s[j] = H(j + 1, j) / nu;
|
||
std::cout << "nu" << nu << std::endl;
|
||
std::cout << "H("<<j<<","<<j<<")" << H(j,j) << std::endl;
|
||
std::cout << "H("<<j+1<<","<<j<<")" << H(j+1,j) << std::endl;
|
||
|
||
// apply new Givens rotation
|
||
H(j, j) = nu;
|
||
H(j + 1, j) = 0.;
|
||
|
||
/* ORDERING??? */
|
||
gamma[j + 1] = -s[j] * gamma[j];
|
||
gamma[j] = std::conj(c[j]) * gamma[j];
|
||
|
||
/* for(auto k = 0; k <= j+1 ; ++k) */
|
||
/* std::cout << "k " << k << "nu " << nu << " c["<<k<<"]" << c[k]<< " s["<<k<<"]" << s[k] << " gamma["<<k<<"]" << gamma[k] << std::endl; */
|
||
|
||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration "
|
||
<< j << " residual " << std::abs(gamma[j + 1]) << std::endl; //" target "
|
||
/* << TargetResSq << std::endl; */
|
||
if(std::abs(gamma[j + 1]) / sqrt(beta) < Tolerance) {
|
||
IterationsToComplete = j;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// backward substitution
|
||
computeSolution(y, gamma, H, v, psi, IterationsToComplete);
|
||
|
||
std::cout << "GMRES: End of operator()" << std::endl;
|
||
}
|
||
|
||
private:
|
||
/* void qrUpdate(std::vector<std::complex<double>> &gamma, */
|
||
/* std::vector<std::complex<double>> &c, */
|
||
/* std::vector<std::complex<double>> &s, */
|
||
/* Eigen::MatrixXcd & H, */
|
||
/* int j) { */
|
||
/* ComplexD beta{}; */
|
||
/* // update QR factorization */
|
||
/* // apply previous Givens rotation */
|
||
/* for(auto i = 0; i < j; i++) { */
|
||
/* beta = -s[i] * H(i, j) + c[i] * H(i + 1, j); */
|
||
/* H(i, j) = std::conj(c[i]) * H(i, j) + std::conj(s[i]) * H(i + 1,
|
||
* j); */
|
||
/* H(i + 1, j) = beta; */
|
||
/* } */
|
||
|
||
/* // compute current Givens rotation */
|
||
/* beta = sqrt(std::norm(H(j, j)) + std::norm(H(j + 1, j))); */
|
||
/* s[j] = H(j + 1, j) / beta; */
|
||
/* c[j] = H(j, j) / beta; */
|
||
/* /\* std::cout << "beta= " << beta << std::endl; *\/ */
|
||
/* /\* std::cout << "s[j]= " << s[ j ] << std::endl; *\/ */
|
||
/* /\* std::cout << "c[j]= " << c[ j ] << std::endl; *\/ */
|
||
|
||
/* /\* std::cout << "gamma[j+1]= " << gamma[ j + 1 ] << std::endl; *\/ */
|
||
/* /\* std::cout << "gamma[j]= " << gamma[ j ] << std::endl; *\/ */
|
||
/* // update right column */
|
||
/* gamma[j + 1] = -s[j] * gamma[j]; */
|
||
/* gamma[j] = std::conj(c[j]) * gamma[j]; */
|
||
/* /\* std::cout << "gamma[j+1]= " << gamma[ j + 1 ] << std::endl; *\/ */
|
||
/* /\* std::cout << "gamma[j]= " << gamma[ j ] << std::endl; *\/ */
|
||
|
||
/* // apply current Givens rotation */
|
||
/* H(j, j) = beta; */
|
||
/* H(j + 1, j) = 0.; */
|
||
/* /\* std::cout << "H(j,j)= " << H( j, j ) << std::endl; *\/ */
|
||
/* /\* std::cout << "H(j+1,j)= " << H( j + 1, j ) << std::endl; *\/ */
|
||
/* } */
|
||
|
||
void computeSolution(std::vector<std::complex<double>> & y,
|
||
std::vector<std::complex<double>> const &gamma,
|
||
Eigen::MatrixXcd const & H,
|
||
std::vector<Field> const & v,
|
||
Field & x,
|
||
int j) {
|
||
for(auto i = j; i >= 0; i--) {
|
||
y[i] = gamma[i];
|
||
for(auto k = i + 1; k <= j; k++)
|
||
y[i] -= H(i, k) * y[k];
|
||
y[i] /= H(i, i);
|
||
}
|
||
|
||
/* if(true) // TODO ??? */
|
||
/* { */
|
||
/* for(auto i = 0; i <= j; i++) */
|
||
/* x = x + v[i] * y[i]; */
|
||
/* } else { */
|
||
x = y[0] * v[0];
|
||
for(auto i = 1; i <= j; i++)
|
||
x = x + v[i] * y[i];
|
||
/* } */
|
||
}
|
||
};
|
||
}
|
||
#endif
|