mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 01:35:36 +00:00
417 lines
15 KiB
C++
417 lines
15 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/lattice/Lattice_ET.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: neo <cossu@post.kek.jp>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_LATTICE_ET_H
|
|
#define GRID_LATTICE_ET_H
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <tuple>
|
|
#include <typeinfo>
|
|
|
|
namespace Grid {
|
|
|
|
////////////////////////////////////////////////////
|
|
// Predicated where support
|
|
////////////////////////////////////////////////////
|
|
template<class iobj,class vobj,class robj>
|
|
inline vobj predicatedWhere(const iobj &predicate,const vobj &iftrue,const robj &iffalse) {
|
|
|
|
typename std::remove_const<vobj>::type ret;
|
|
|
|
typedef typename vobj::scalar_object scalar_object;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
const int Nsimd = vobj::vector_type::Nsimd();
|
|
const int words = sizeof(vobj)/sizeof(vector_type);
|
|
|
|
std::vector<Integer> mask(Nsimd);
|
|
std::vector<scalar_object> truevals (Nsimd);
|
|
std::vector<scalar_object> falsevals(Nsimd);
|
|
|
|
extract(iftrue ,truevals);
|
|
extract(iffalse ,falsevals);
|
|
extract<vInteger,Integer>(TensorRemove(predicate),mask);
|
|
|
|
for(int s=0;s<Nsimd;s++){
|
|
if (mask[s]) falsevals[s]=truevals[s];
|
|
}
|
|
|
|
merge(ret,falsevals);
|
|
return ret;
|
|
}
|
|
|
|
////////////////////////////////////////////
|
|
// recursive evaluation of expressions; Could
|
|
// switch to generic approach with variadics, a la
|
|
// Antonin's Lat Sim but the repack to variadic with popped
|
|
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
|
|
////////////////////////////////////////////
|
|
|
|
|
|
//leaf eval of lattice ; should enable if protect using traits
|
|
|
|
template <typename T> using is_lattice = std::is_base_of<LatticeBase,T >;
|
|
|
|
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
|
|
|
|
template<class sobj>
|
|
inline sobj eval(const unsigned int ss, const sobj &arg)
|
|
{
|
|
return arg;
|
|
}
|
|
template<class lobj>
|
|
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg)
|
|
{
|
|
return arg._odata[ss];
|
|
}
|
|
|
|
// handle nodes in syntax tree
|
|
template <typename Op, typename T1>
|
|
auto inline eval(const unsigned int ss, const LatticeUnaryExpression<Op,T1 > &expr) // eval one operand
|
|
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second))))
|
|
{
|
|
return expr.first.func(eval(ss,std::get<0>(expr.second)));
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
auto inline eval(const unsigned int ss, const LatticeBinaryExpression<Op,T1,T2> &expr) // eval two operands
|
|
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second))))
|
|
{
|
|
return expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)));
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
auto inline eval(const unsigned int ss, const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr) // eval three operands
|
|
-> decltype(expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)),eval(ss,std::get<2>(expr.second))))
|
|
{
|
|
return expr.first.func(eval(ss,std::get<0>(expr.second)),eval(ss,std::get<1>(expr.second)),eval(ss,std::get<2>(expr.second)) );
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Obtain the grid from an expression, ensuring conformable. This must follow a tree recursion
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<class T1, typename std::enable_if<is_lattice<T1>::value, T1>::type * =nullptr >
|
|
inline void GridFromExpression(GridBase * &grid,const T1& lat) // Lattice leaf
|
|
{
|
|
if ( grid ) {
|
|
conformable(grid,lat._grid);
|
|
}
|
|
grid=lat._grid;
|
|
}
|
|
template<class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr >
|
|
inline void GridFromExpression(GridBase * &grid,const T1& notlat) // non-lattice leaf
|
|
{
|
|
}
|
|
template <typename Op, typename T1>
|
|
inline void GridFromExpression(GridBase * &grid,const LatticeUnaryExpression<Op,T1 > &expr)
|
|
{
|
|
GridFromExpression(grid,std::get<0>(expr.second));// recurse
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
inline void GridFromExpression(GridBase * &grid,const LatticeBinaryExpression<Op,T1,T2> &expr)
|
|
{
|
|
GridFromExpression(grid,std::get<0>(expr.second));// recurse
|
|
GridFromExpression(grid,std::get<1>(expr.second));
|
|
}
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
inline void GridFromExpression( GridBase * &grid,const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr)
|
|
{
|
|
GridFromExpression(grid,std::get<0>(expr.second));// recurse
|
|
GridFromExpression(grid,std::get<1>(expr.second));
|
|
GridFromExpression(grid,std::get<2>(expr.second));
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Obtain the CB from an expression, ensuring conformable. This must follow a tree recursion
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<class T1, typename std::enable_if<is_lattice<T1>::value, T1>::type * =nullptr >
|
|
inline void CBFromExpression(int &cb,const T1& lat) // Lattice leaf
|
|
{
|
|
if ( (cb==Odd) || (cb==Even) ) {
|
|
assert(cb==lat.checkerboard);
|
|
}
|
|
cb=lat.checkerboard;
|
|
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
|
|
}
|
|
template<class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr >
|
|
inline void CBFromExpression(int &cb,const T1& notlat) // non-lattice leaf
|
|
{
|
|
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
|
|
}
|
|
template <typename Op, typename T1>
|
|
inline void CBFromExpression(int &cb,const LatticeUnaryExpression<Op,T1 > &expr)
|
|
{
|
|
CBFromExpression(cb,std::get<0>(expr.second));// recurse
|
|
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
inline void CBFromExpression(int &cb,const LatticeBinaryExpression<Op,T1,T2> &expr)
|
|
{
|
|
CBFromExpression(cb,std::get<0>(expr.second));// recurse
|
|
CBFromExpression(cb,std::get<1>(expr.second));
|
|
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
|
|
}
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
inline void CBFromExpression( int &cb,const LatticeTrinaryExpression<Op,T1,T2,T3 > &expr)
|
|
{
|
|
CBFromExpression(cb,std::get<0>(expr.second));// recurse
|
|
CBFromExpression(cb,std::get<1>(expr.second));
|
|
CBFromExpression(cb,std::get<2>(expr.second));
|
|
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
|
|
}
|
|
|
|
////////////////////////////////////////////
|
|
// Unary operators and funcs
|
|
////////////////////////////////////////////
|
|
#define GridUnopClass(name,ret)\
|
|
template <class arg> struct name\
|
|
{\
|
|
static auto inline func(const arg a)-> decltype(ret) { return ret; } \
|
|
};
|
|
|
|
GridUnopClass(UnarySub,-a);
|
|
GridUnopClass(UnaryNot,Not(a));
|
|
GridUnopClass(UnaryAdj,adj(a));
|
|
GridUnopClass(UnaryConj,conjugate(a));
|
|
GridUnopClass(UnaryTrace,trace(a));
|
|
GridUnopClass(UnaryTranspose,transpose(a));
|
|
GridUnopClass(UnaryTa,Ta(a));
|
|
GridUnopClass(UnaryProjectOnGroup,ProjectOnGroup(a));
|
|
GridUnopClass(UnaryReal,real(a));
|
|
GridUnopClass(UnaryImag,imag(a));
|
|
GridUnopClass(UnaryToReal,toReal(a));
|
|
GridUnopClass(UnaryToComplex,toComplex(a));
|
|
GridUnopClass(UnaryAbs,abs(a));
|
|
GridUnopClass(UnarySqrt,sqrt(a));
|
|
GridUnopClass(UnaryRsqrt,rsqrt(a));
|
|
GridUnopClass(UnarySin,sin(a));
|
|
GridUnopClass(UnaryCos,cos(a));
|
|
GridUnopClass(UnaryLog,log(a));
|
|
GridUnopClass(UnaryExp,exp(a));
|
|
|
|
////////////////////////////////////////////
|
|
// Binary operators
|
|
////////////////////////////////////////////
|
|
#define GridBinOpClass(name,combination)\
|
|
template <class left,class right>\
|
|
struct name\
|
|
{\
|
|
static auto inline func(const left &lhs,const right &rhs)-> decltype(combination) const \
|
|
{\
|
|
return combination;\
|
|
}\
|
|
}
|
|
GridBinOpClass(BinaryAdd,lhs+rhs);
|
|
GridBinOpClass(BinarySub,lhs-rhs);
|
|
GridBinOpClass(BinaryMul,lhs*rhs);
|
|
|
|
GridBinOpClass(BinaryAnd ,lhs&rhs);
|
|
GridBinOpClass(BinaryOr ,lhs|rhs);
|
|
GridBinOpClass(BinaryAndAnd,lhs&&rhs);
|
|
GridBinOpClass(BinaryOrOr ,lhs||rhs);
|
|
|
|
////////////////////////////////////////////////////
|
|
// Trinary conditional op
|
|
////////////////////////////////////////////////////
|
|
#define GridTrinOpClass(name,combination)\
|
|
template <class predicate,class left, class right> \
|
|
struct name\
|
|
{\
|
|
static auto inline func(const predicate &pred,const left &lhs,const right &rhs)-> decltype(combination) const \
|
|
{\
|
|
return combination;\
|
|
}\
|
|
}
|
|
|
|
GridTrinOpClass(TrinaryWhere,(predicatedWhere<predicate, \
|
|
typename std::remove_reference<left>::type, \
|
|
typename std::remove_reference<right>::type> (pred,lhs,rhs)));
|
|
|
|
////////////////////////////////////////////
|
|
// Operator syntactical glue
|
|
////////////////////////////////////////////
|
|
|
|
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
|
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
|
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
|
|
|
#define GRID_DEF_UNOP(op, name)\
|
|
template <typename T1,\
|
|
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value, T1>::type* = nullptr> inline auto op(const T1 &arg) \
|
|
-> decltype(LatticeUnaryExpression<GRID_UNOP(name),const T1&>(std::make_pair(GRID_UNOP(name)(),std::forward_as_tuple(arg)))) \
|
|
{ return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>(std::make_pair(GRID_UNOP(name)(),std::forward_as_tuple(arg))); }
|
|
|
|
#define GRID_BINOP_LEFT(op, name)\
|
|
template <typename T1,typename T2,\
|
|
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value, T1>::type* = nullptr>\
|
|
inline auto op(const T1 &lhs,const T2&rhs) \
|
|
-> decltype(LatticeBinaryExpression<GRID_BINOP(name),const T1&,const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
|
std::forward_as_tuple(lhs, rhs)))) \
|
|
{\
|
|
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
|
std::forward_as_tuple(lhs, rhs))); \
|
|
}
|
|
|
|
#define GRID_BINOP_RIGHT(op, name)\
|
|
template <typename T1,typename T2,\
|
|
typename std::enable_if<!is_lattice<T1>::value && !is_lattice_expr<T1>::value, T1>::type* = nullptr,\
|
|
typename std::enable_if< is_lattice<T2>::value || is_lattice_expr<T2>::value, T2>::type* = nullptr> \
|
|
inline auto op(const T1 &lhs,const T2&rhs) \
|
|
-> decltype(LatticeBinaryExpression<GRID_BINOP(name),const T1&,const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
|
std::forward_as_tuple(lhs, rhs)))) \
|
|
{\
|
|
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>(std::make_pair(GRID_BINOP(name)(),\
|
|
std::forward_as_tuple(lhs, rhs))); \
|
|
}
|
|
|
|
#define GRID_DEF_BINOP(op, name)\
|
|
GRID_BINOP_LEFT(op,name);\
|
|
GRID_BINOP_RIGHT(op,name);
|
|
|
|
|
|
#define GRID_DEF_TRINOP(op, name)\
|
|
template <typename T1,typename T2,typename T3> inline auto op(const T1 &pred,const T2&lhs,const T3 &rhs) \
|
|
-> decltype(LatticeTrinaryExpression<GRID_TRINOP(name),const T1&,const T2 &,const T3&>(std::make_pair(GRID_TRINOP(name)(),\
|
|
std::forward_as_tuple(pred,lhs,rhs)))) \
|
|
{\
|
|
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &,const T3&>(std::make_pair(GRID_TRINOP(name)(), \
|
|
std::forward_as_tuple(pred,lhs, rhs))); \
|
|
}
|
|
////////////////////////
|
|
//Operator definitions
|
|
////////////////////////
|
|
|
|
GRID_DEF_UNOP(operator -,UnarySub);
|
|
GRID_DEF_UNOP(Not,UnaryNot);
|
|
GRID_DEF_UNOP(operator !,UnaryNot);
|
|
GRID_DEF_UNOP(adj,UnaryAdj);
|
|
GRID_DEF_UNOP(conjugate,UnaryConj);
|
|
GRID_DEF_UNOP(trace,UnaryTrace);
|
|
GRID_DEF_UNOP(transpose,UnaryTranspose);
|
|
GRID_DEF_UNOP(Ta,UnaryTa);
|
|
GRID_DEF_UNOP(ProjectOnGroup,UnaryProjectOnGroup);
|
|
GRID_DEF_UNOP(real,UnaryReal);
|
|
GRID_DEF_UNOP(imag,UnaryImag);
|
|
GRID_DEF_UNOP(toReal,UnaryToReal);
|
|
GRID_DEF_UNOP(toComplex,UnaryToComplex);
|
|
GRID_DEF_UNOP(abs ,UnaryAbs); //abs overloaded in cmath C++98; DON'T do the abs-fabs-dabs-labs thing
|
|
GRID_DEF_UNOP(sqrt ,UnarySqrt);
|
|
GRID_DEF_UNOP(rsqrt,UnaryRsqrt);
|
|
GRID_DEF_UNOP(sin ,UnarySin);
|
|
GRID_DEF_UNOP(cos ,UnaryCos);
|
|
GRID_DEF_UNOP(log ,UnaryLog);
|
|
GRID_DEF_UNOP(exp ,UnaryExp);
|
|
|
|
GRID_DEF_BINOP(operator+,BinaryAdd);
|
|
GRID_DEF_BINOP(operator-,BinarySub);
|
|
GRID_DEF_BINOP(operator*,BinaryMul);
|
|
|
|
GRID_DEF_BINOP(operator&,BinaryAnd);
|
|
GRID_DEF_BINOP(operator|,BinaryOr);
|
|
GRID_DEF_BINOP(operator&&,BinaryAndAnd);
|
|
GRID_DEF_BINOP(operator||,BinaryOrOr);
|
|
|
|
GRID_DEF_TRINOP(where,TrinaryWhere);
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Closure convenience to force expression to evaluate
|
|
/////////////////////////////////////////////////////////////
|
|
template<class Op,class T1>
|
|
auto closure(const LatticeUnaryExpression<Op,T1> & expr)
|
|
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))>
|
|
{
|
|
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))> ret(expr);
|
|
return ret;
|
|
}
|
|
template<class Op,class T1, class T2>
|
|
auto closure(const LatticeBinaryExpression<Op,T1,T2> & expr)
|
|
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
|
eval(0,std::get<1>(expr.second))))>
|
|
{
|
|
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
|
eval(0,std::get<1>(expr.second))))> ret(expr);
|
|
return ret;
|
|
}
|
|
template<class Op,class T1, class T2, class T3>
|
|
auto closure(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
|
|
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
|
eval(0,std::get<1>(expr.second)),
|
|
eval(0,std::get<2>(expr.second))))>
|
|
{
|
|
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
|
eval(0,std::get<1>(expr.second)),
|
|
eval(0,std::get<2>(expr.second))))> ret(expr);
|
|
return ret;
|
|
}
|
|
|
|
#undef GRID_UNOP
|
|
#undef GRID_BINOP
|
|
#undef GRID_TRINOP
|
|
|
|
#undef GRID_DEF_UNOP
|
|
#undef GRID_DEF_BINOP
|
|
#undef GRID_DEF_TRINOP
|
|
|
|
}
|
|
|
|
#if 0
|
|
using namespace Grid;
|
|
|
|
int main(int argc,char **argv){
|
|
|
|
Lattice<double> v1(16);
|
|
Lattice<double> v2(16);
|
|
Lattice<double> v3(16);
|
|
|
|
BinaryAdd<double,double> tmp;
|
|
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
|
|
expr(std::make_pair(tmp,
|
|
std::forward_as_tuple(v1,v2)));
|
|
tmp.func(eval(0,v1),eval(0,v2));
|
|
|
|
auto var = v1+v2;
|
|
std::cout<<GridLogMessage<<typeid(var).name()<<std::endl;
|
|
|
|
v3=v1+v2;
|
|
v3=v1+v2+v1*v2;
|
|
};
|
|
|
|
void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3)
|
|
{
|
|
v3=v1+v2+v1*v2;
|
|
}
|
|
#endif
|
|
|
|
#endif
|