mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 10:15:36 +00:00
282 lines
9.2 KiB
C++
282 lines
9.2 KiB
C++
#ifndef GRID_ALGORITHM_LINEAR_OP_H
|
|
#define GRID_ALGORITHM_LINEAR_OP_H
|
|
|
|
namespace Grid {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
// LinearOperators Take a something and return a something.
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
|
|
//SBase
|
|
// i) F(a x + b y) = aF(x) + b F(y).
|
|
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
|
|
//
|
|
// Would be fun to have a test linearity & Herm Conj function!
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class Field> class LinearOperatorBase {
|
|
public:
|
|
|
|
// Support for coarsening to a multigrid
|
|
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
|
|
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
|
|
|
|
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
|
|
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
|
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
|
|
virtual void HermOp(const Field &in, Field &out)=0;
|
|
};
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
|
|
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
|
|
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
|
|
// replication of code.
|
|
//
|
|
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
|
|
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
|
|
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
|
|
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
|
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Construct herm op from non-herm matrix
|
|
////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class MdagMLinearOperator : public LinearOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
|
|
|
|
// Support for coarsening to a multigrid
|
|
void OpDiag (const Field &in, Field &out) {
|
|
_Mat.Mdiag(in,out);
|
|
}
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
_Mat.Mdir(in,out,dir,disp);
|
|
}
|
|
void Op (const Field &in, Field &out){
|
|
_Mat.M(in,out);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){
|
|
_Mat.Mdag(in,out);
|
|
}
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
_Mat.MdagM(in,out,n1,n2);
|
|
}
|
|
void HermOp(const Field &in, Field &out){
|
|
RealD n1,n2;
|
|
HermOpAndNorm(in,out,n1,n2);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Construct herm op and shift it for mgrid smoother
|
|
////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
RealD _shift;
|
|
public:
|
|
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
|
// Support for coarsening to a multigrid
|
|
void OpDiag (const Field &in, Field &out) {
|
|
_Mat.Mdiag(in,out);
|
|
assert(0);
|
|
}
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
_Mat.Mdir(in,out,dir,disp);
|
|
assert(0);
|
|
}
|
|
void Op (const Field &in, Field &out){
|
|
_Mat.M(in,out);
|
|
assert(0);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){
|
|
_Mat.Mdag(in,out);
|
|
assert(0);
|
|
}
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
_Mat.MdagM(in,out,n1,n2);
|
|
out = out + _shift*in;
|
|
|
|
ComplexD dot;
|
|
dot= innerProduct(in,out);
|
|
n1=real(dot);
|
|
n2=norm2(out);
|
|
}
|
|
void HermOp(const Field &in, Field &out){
|
|
RealD n1,n2;
|
|
HermOpAndNorm(in,out,n1,n2);
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
// Wrap an already herm matrix
|
|
////////////////////////////////////////////////////////////////////
|
|
template<class Matrix,class Field>
|
|
class HermitianLinearOperator : public LinearOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
|
|
// Support for coarsening to a multigrid
|
|
void OpDiag (const Field &in, Field &out) {
|
|
_Mat.Mdiag(in,out);
|
|
}
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
_Mat.Mdir(in,out,dir,disp);
|
|
}
|
|
void Op (const Field &in, Field &out){
|
|
_Mat.M(in,out);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){
|
|
_Mat.M(in,out);
|
|
}
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
ComplexD dot;
|
|
|
|
_Mat.M(in,out);
|
|
|
|
dot= innerProduct(in,out);
|
|
n1=real(dot);
|
|
|
|
dot = innerProduct(out,out);
|
|
n2=real(dot);
|
|
}
|
|
void HermOp(const Field &in, Field &out){
|
|
_Mat.M(in,out);
|
|
}
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////
|
|
// Even Odd Schur decomp operators; there are several
|
|
// ways to introduce the even odd checkerboarding
|
|
//////////////////////////////////////////////////////////
|
|
|
|
template<class Field>
|
|
class SchurOperatorBase : public LinearOperatorBase<Field> {
|
|
public:
|
|
virtual RealD Mpc (const Field &in, Field &out) =0;
|
|
virtual RealD MpcDag (const Field &in, Field &out) =0;
|
|
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
|
Field tmp(in._grid);
|
|
ni=Mpc(in,tmp);
|
|
no=MpcDag(tmp,out);
|
|
}
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
|
MpcDagMpc(in,out,n1,n2);
|
|
}
|
|
void HermOp(const Field &in, Field &out){
|
|
RealD n1,n2;
|
|
HermOpAndNorm(in,out,n1,n2);
|
|
}
|
|
void Op (const Field &in, Field &out){
|
|
Mpc(in,out);
|
|
}
|
|
void AdjOp (const Field &in, Field &out){
|
|
MpcDag(in,out);
|
|
}
|
|
// Support for coarsening to a multigrid
|
|
void OpDiag (const Field &in, Field &out) {
|
|
assert(0); // must coarsen the unpreconditioned system
|
|
}
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
|
assert(0);
|
|
}
|
|
|
|
};
|
|
template<class Matrix,class Field>
|
|
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
|
|
virtual RealD Mpc (const Field &in, Field &out) {
|
|
Field tmp(in._grid);
|
|
|
|
_Mat.Meooe(in,tmp);
|
|
_Mat.MooeeInv(tmp,out);
|
|
_Mat.Meooe(out,tmp);
|
|
|
|
_Mat.Mooee(in,out);
|
|
return axpy_norm(out,-1.0,tmp,out);
|
|
}
|
|
virtual RealD MpcDag (const Field &in, Field &out){
|
|
Field tmp(in._grid);
|
|
|
|
_Mat.MeooeDag(in,tmp);
|
|
_Mat.MooeeInvDag(tmp,out);
|
|
_Mat.MeooeDag(out,tmp);
|
|
|
|
_Mat.MooeeDag(in,out);
|
|
return axpy_norm(out,-1.0,tmp,out);
|
|
}
|
|
};
|
|
template<class Matrix,class Field>
|
|
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
|
|
Matrix &_Mat;
|
|
public:
|
|
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
|
|
|
|
virtual RealD Mpc (const Field &in, Field &out) {
|
|
Field tmp(in._grid);
|
|
|
|
_Mat.Meooe(in,tmp);
|
|
_Mat.MooeeInv(tmp,out);
|
|
_Mat.Meooe(out,tmp);
|
|
_Mat.MooeeInv(tmp,out);
|
|
|
|
return axpy_norm(out,-1.0,tmp,in);
|
|
}
|
|
virtual RealD MpcDag (const Field &in, Field &out){
|
|
Field tmp(in._grid);
|
|
|
|
_Mat.MooeeInvDag(in,out);
|
|
_Mat.MeooeDag(out,tmp);
|
|
_Mat.MooeeInvDag(tmp,out);
|
|
_Mat.MeooeDag(out,tmp);
|
|
|
|
return axpy_norm(out,-1.0,tmp,in);
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Base classes for functions of operators
|
|
/////////////////////////////////////////////////////////////
|
|
template<class Field> class OperatorFunction {
|
|
public:
|
|
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
|
};
|
|
|
|
template<class Field> class LinearFunction {
|
|
public:
|
|
virtual void operator() (const Field &in, Field &out) = 0;
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Base classes for Multishift solvers for operators
|
|
/////////////////////////////////////////////////////////////
|
|
template<class Field> class OperatorMultiFunction {
|
|
public:
|
|
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
|
|
};
|
|
|
|
// FIXME : To think about
|
|
|
|
// Chroma functionality list defining LinearOperator
|
|
/*
|
|
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
|
|
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
|
|
virtual const Subset& subset() const = 0;
|
|
virtual unsigned long nFlops() const { return 0; }
|
|
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
|
|
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
|
|
const Subset& subset() const {return all;}
|
|
};
|
|
*/
|
|
|
|
|
|
}
|
|
|
|
#endif
|