mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
408 lines
14 KiB
C++
408 lines
14 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/lattice/Lattice_ET.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: neo <cossu@post.kek.jp>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_LATTICE_ET_H
|
|
#define GRID_LATTICE_ET_H
|
|
|
|
#include <iostream>
|
|
#include <tuple>
|
|
#include <typeinfo>
|
|
#include <vector>
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
////////////////////////////////////////////////////
|
|
// Predicated where support
|
|
////////////////////////////////////////////////////
|
|
template <class iobj, class vobj, class robj>
|
|
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
|
|
const robj &iffalse) {
|
|
typename std::remove_const<vobj>::type ret;
|
|
|
|
typedef typename vobj::scalar_object scalar_object;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
const int Nsimd = vobj::vector_type::Nsimd();
|
|
|
|
ExtractBuffer<Integer> mask(Nsimd);
|
|
ExtractBuffer<scalar_object> truevals(Nsimd);
|
|
ExtractBuffer<scalar_object> falsevals(Nsimd);
|
|
|
|
extract(iftrue, truevals);
|
|
extract(iffalse, falsevals);
|
|
extract<vInteger, Integer>(TensorRemove(predicate), mask);
|
|
|
|
for (int s = 0; s < Nsimd; s++) {
|
|
if (mask[s]) falsevals[s] = truevals[s];
|
|
}
|
|
|
|
merge(ret, falsevals);
|
|
return ret;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////
|
|
//Specialization of getVectorType for lattices
|
|
/////////////////////////////////////////////////////
|
|
template<typename T>
|
|
struct getVectorType<Lattice<T> >{
|
|
typedef typename Lattice<T>::vector_object type;
|
|
};
|
|
|
|
////////////////////////////////////////////
|
|
//-- recursive evaluation of expressions; --
|
|
// handle leaves of syntax tree
|
|
///////////////////////////////////////////////////
|
|
template<class sobj> accelerator_inline
|
|
sobj eval(const uint64_t ss, const sobj &arg)
|
|
{
|
|
return arg;
|
|
}
|
|
|
|
template <class lobj> accelerator_inline
|
|
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
|
|
{
|
|
return arg[ss];
|
|
}
|
|
template <class lobj> accelerator_inline
|
|
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
|
|
{
|
|
auto view = arg.View();
|
|
return view[ss];
|
|
}
|
|
|
|
///////////////////////////////////////////////////
|
|
// handle nodes in syntax tree- eval one operand
|
|
///////////////////////////////////////////////////
|
|
template <typename Op, typename T1> accelerator_inline
|
|
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
|
|
-> decltype(expr.op.func( eval(ss, expr.arg1)))
|
|
{
|
|
return expr.op.func( eval(ss, expr.arg1) );
|
|
}
|
|
///////////////////////
|
|
// eval two operands
|
|
///////////////////////
|
|
template <typename Op, typename T1, typename T2> accelerator_inline
|
|
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
|
|
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
|
|
{
|
|
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
|
|
}
|
|
///////////////////////
|
|
// eval three operands
|
|
///////////////////////
|
|
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
|
|
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
|
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
|
|
{
|
|
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Obtain the grid from an expression, ensuring conformable. This must follow a
|
|
// tree recursion; must retain grid pointer in the LatticeView class which sucks
|
|
// Use a different method, and make it void *.
|
|
// Perhaps a conformable method.
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
|
accelerator_inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
|
|
{
|
|
lat.Conformable(grid);
|
|
}
|
|
|
|
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
|
accelerator_inline
|
|
void GridFromExpression(GridBase *&grid,const T1 ¬lat) // non-lattice leaf
|
|
{}
|
|
|
|
template <typename Op, typename T1>
|
|
accelerator_inline
|
|
void GridFromExpression(GridBase *&grid,const LatticeUnaryExpression<Op, T1> &expr)
|
|
{
|
|
GridFromExpression(grid, expr.arg1); // recurse
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
accelerator_inline
|
|
void GridFromExpression(GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr)
|
|
{
|
|
GridFromExpression(grid, expr.arg1); // recurse
|
|
GridFromExpression(grid, expr.arg2);
|
|
}
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
accelerator_inline
|
|
void GridFromExpression(GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
|
{
|
|
GridFromExpression(grid, expr.arg1); // recurse
|
|
GridFromExpression(grid, expr.arg2); // recurse
|
|
GridFromExpression(grid, expr.arg3); // recurse
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Obtain the CB from an expression, ensuring conformable. This must follow a
|
|
// tree recursion
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
|
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
|
{
|
|
if ((cb == Odd) || (cb == Even)) {
|
|
assert(cb == lat.Checkerboard());
|
|
}
|
|
cb = lat.Checkerboard();
|
|
}
|
|
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
|
inline void CBFromExpression(int &cb, const T1 ¬lat) // non-lattice leaf
|
|
{
|
|
}
|
|
|
|
template <typename Op, typename T1> inline
|
|
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
|
|
{
|
|
CBFromExpression(cb, expr.arg1); // recurse AST
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2> inline
|
|
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
|
|
{
|
|
CBFromExpression(cb, expr.arg1); // recurse AST
|
|
CBFromExpression(cb, expr.arg2); // recurse AST
|
|
}
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
|
{
|
|
CBFromExpression(cb, expr.arg1); // recurse AST
|
|
CBFromExpression(cb, expr.arg2); // recurse AST
|
|
CBFromExpression(cb, expr.arg3); // recurse AST
|
|
}
|
|
|
|
////////////////////////////////////////////
|
|
// Unary operators and funcs
|
|
////////////////////////////////////////////
|
|
#define GridUnopClass(name, ret) \
|
|
template <class arg> \
|
|
struct name { \
|
|
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
|
|
};
|
|
|
|
GridUnopClass(UnarySub, -a);
|
|
GridUnopClass(UnaryNot, Not(a));
|
|
GridUnopClass(UnaryAdj, adj(a));
|
|
GridUnopClass(UnaryConj, conjugate(a));
|
|
GridUnopClass(UnaryTrace, trace(a));
|
|
GridUnopClass(UnaryTranspose, transpose(a));
|
|
GridUnopClass(UnaryTa, Ta(a));
|
|
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
|
GridUnopClass(UnaryReal, real(a));
|
|
GridUnopClass(UnaryImag, imag(a));
|
|
GridUnopClass(UnaryToReal, toReal(a));
|
|
GridUnopClass(UnaryToComplex, toComplex(a));
|
|
GridUnopClass(UnaryTimesI, timesI(a));
|
|
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
|
GridUnopClass(UnaryAbs, abs(a));
|
|
GridUnopClass(UnarySqrt, sqrt(a));
|
|
GridUnopClass(UnaryRsqrt, rsqrt(a));
|
|
GridUnopClass(UnarySin, sin(a));
|
|
GridUnopClass(UnaryCos, cos(a));
|
|
GridUnopClass(UnaryAsin, asin(a));
|
|
GridUnopClass(UnaryAcos, acos(a));
|
|
GridUnopClass(UnaryLog, log(a));
|
|
GridUnopClass(UnaryExp, exp(a));
|
|
|
|
////////////////////////////////////////////
|
|
// Binary operators
|
|
////////////////////////////////////////////
|
|
#define GridBinOpClass(name, combination) \
|
|
template <class left, class right> \
|
|
struct name { \
|
|
static auto accelerator_inline \
|
|
func(const left &lhs, const right &rhs) \
|
|
-> decltype(combination) const \
|
|
{ \
|
|
return combination; \
|
|
} \
|
|
};
|
|
|
|
GridBinOpClass(BinaryAdd, lhs + rhs);
|
|
GridBinOpClass(BinarySub, lhs - rhs);
|
|
GridBinOpClass(BinaryMul, lhs *rhs);
|
|
GridBinOpClass(BinaryDiv, lhs /rhs);
|
|
GridBinOpClass(BinaryAnd, lhs &rhs);
|
|
GridBinOpClass(BinaryOr, lhs | rhs);
|
|
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
|
|
GridBinOpClass(BinaryOrOr, lhs || rhs);
|
|
|
|
////////////////////////////////////////////////////
|
|
// Trinary conditional op
|
|
////////////////////////////////////////////////////
|
|
#define GridTrinOpClass(name, combination) \
|
|
template <class predicate, class left, class right> \
|
|
struct name { \
|
|
static auto accelerator_inline \
|
|
func(const predicate &pred, const left &lhs, const right &rhs) \
|
|
-> decltype(combination) const \
|
|
{ \
|
|
return combination; \
|
|
} \
|
|
};
|
|
|
|
GridTrinOpClass(TrinaryWhere,
|
|
(predicatedWhere<predicate,
|
|
typename std::remove_reference<left>::type,
|
|
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
|
|
|
|
////////////////////////////////////////////
|
|
// Operator syntactical glue
|
|
////////////////////////////////////////////
|
|
|
|
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
|
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
|
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
|
|
|
#define GRID_DEF_UNOP(op, name) \
|
|
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
|
|
inline auto op(const T1 &arg) ->decltype(LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg)) \
|
|
{ \
|
|
return LatticeUnaryExpression<GRID_UNOP(name),T1>(GRID_UNOP(name)(), arg); \
|
|
}
|
|
|
|
#define GRID_BINOP_LEFT(op, name) \
|
|
template <typename T1, typename T2, \
|
|
typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
|
|
inline auto op(const T1 &lhs, const T2 &rhs) \
|
|
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs)) \
|
|
{ \
|
|
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs,rhs);\
|
|
}
|
|
|
|
#define GRID_BINOP_RIGHT(op, name) \
|
|
template <typename T1, typename T2, \
|
|
typename std::enable_if<!is_lattice<T1>::value&&!is_lattice_expr<T1>::value,T1>::type * = nullptr, \
|
|
typename std::enable_if< is_lattice<T2>::value|| is_lattice_expr<T2>::value,T2>::type * = nullptr> \
|
|
inline auto op(const T1 &lhs, const T2 &rhs) \
|
|
->decltype(LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs)) \
|
|
{ \
|
|
return LatticeBinaryExpression<GRID_BINOP(name),T1,T2>(GRID_BINOP(name)(),lhs, rhs); \
|
|
}
|
|
|
|
#define GRID_DEF_BINOP(op, name) \
|
|
GRID_BINOP_LEFT(op, name); \
|
|
GRID_BINOP_RIGHT(op, name);
|
|
|
|
#define GRID_DEF_TRINOP(op, name) \
|
|
template <typename T1, typename T2, typename T3> \
|
|
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
|
|
->decltype(LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs)) \
|
|
{ \
|
|
return LatticeTrinaryExpression<GRID_TRINOP(name),T1,T2,T3>(GRID_TRINOP(name)(),pred, lhs, rhs); \
|
|
}
|
|
|
|
////////////////////////
|
|
// Operator definitions
|
|
////////////////////////
|
|
GRID_DEF_UNOP(operator-, UnarySub);
|
|
GRID_DEF_UNOP(Not, UnaryNot);
|
|
GRID_DEF_UNOP(operator!, UnaryNot);
|
|
GRID_DEF_UNOP(adj, UnaryAdj);
|
|
GRID_DEF_UNOP(conjugate, UnaryConj);
|
|
GRID_DEF_UNOP(trace, UnaryTrace);
|
|
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
|
GRID_DEF_UNOP(Ta, UnaryTa);
|
|
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
|
GRID_DEF_UNOP(real, UnaryReal);
|
|
GRID_DEF_UNOP(imag, UnaryImag);
|
|
GRID_DEF_UNOP(toReal, UnaryToReal);
|
|
GRID_DEF_UNOP(toComplex, UnaryToComplex);
|
|
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
|
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
|
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
|
// abs-fabs-dabs-labs thing
|
|
GRID_DEF_UNOP(sqrt, UnarySqrt);
|
|
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
|
|
GRID_DEF_UNOP(sin, UnarySin);
|
|
GRID_DEF_UNOP(cos, UnaryCos);
|
|
GRID_DEF_UNOP(asin, UnaryAsin);
|
|
GRID_DEF_UNOP(acos, UnaryAcos);
|
|
GRID_DEF_UNOP(log, UnaryLog);
|
|
GRID_DEF_UNOP(exp, UnaryExp);
|
|
|
|
GRID_DEF_BINOP(operator+, BinaryAdd);
|
|
GRID_DEF_BINOP(operator-, BinarySub);
|
|
GRID_DEF_BINOP(operator*, BinaryMul);
|
|
GRID_DEF_BINOP(operator/, BinaryDiv);
|
|
|
|
GRID_DEF_BINOP(operator&, BinaryAnd);
|
|
GRID_DEF_BINOP(operator|, BinaryOr);
|
|
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
|
|
GRID_DEF_BINOP(operator||, BinaryOrOr);
|
|
|
|
GRID_DEF_TRINOP(where, TrinaryWhere);
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Closure convenience to force expression to evaluate
|
|
/////////////////////////////////////////////////////////////
|
|
template <class Op, class T1>
|
|
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
|
|
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
|
|
{
|
|
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
|
|
return ret;
|
|
}
|
|
template <class Op, class T1, class T2>
|
|
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
|
|
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
|
|
{
|
|
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
|
|
return ret;
|
|
}
|
|
template <class Op, class T1, class T2, class T3>
|
|
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
|
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
|
|
eval(0, expr.arg2),
|
|
eval(0, expr.arg3)))>
|
|
{
|
|
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
|
|
eval(0, expr.arg2),
|
|
eval(0, expr.arg3)))> ret(expr);
|
|
return ret;
|
|
}
|
|
|
|
#undef GRID_UNOP
|
|
#undef GRID_BINOP
|
|
#undef GRID_TRINOP
|
|
|
|
#undef GRID_DEF_UNOP
|
|
#undef GRID_DEF_BINOP
|
|
#undef GRID_DEF_TRINOP
|
|
|
|
NAMESPACE_END(Grid);
|
|
|
|
#endif
|