mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 19:25:56 +01:00
306 lines
8.9 KiB
C++
306 lines
8.9 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/tensors/Tensor_Ta.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: neo <cossu@post.kek.jp>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_MATH_TA_H
|
|
#define GRID_MATH_TA_H
|
|
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
///////////////////////////////////////////////
|
|
// Ta function for scalar, vector, matrix
|
|
///////////////////////////////////////////////
|
|
/*
|
|
accelerator_inline ComplexF Ta( const ComplexF &arg){ return arg;}
|
|
accelerator_inline ComplexD Ta( const ComplexD &arg){ return arg;}
|
|
accelerator_inline RealF Ta( const RealF &arg){ return arg;}
|
|
accelerator_inline RealD Ta( const RealD &arg){ return arg;}
|
|
*/
|
|
|
|
template<class vtype> accelerator_inline iScalar<vtype> Ta(const iScalar<vtype>&r)
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal = Ta(r._internal);
|
|
return ret;
|
|
}
|
|
template<class vtype,int N> accelerator_inline iVector<vtype,N> Ta(const iVector<vtype,N>&r)
|
|
{
|
|
iVector<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
ret._internal[i] = Ta(r._internal[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
template<class vtype,int N> accelerator_inline iMatrix<vtype,N> Ta(const iMatrix<vtype,N> &arg)
|
|
{
|
|
iMatrix<vtype,N> ret;
|
|
|
|
double factor = (1.0/(double)N);
|
|
ret= (arg - adj(arg))*0.5;
|
|
ret=ret - (trace(ret)*factor);
|
|
return ret;
|
|
}
|
|
|
|
// for sp2n can't be as simple as Ta. We do a Gram-Schmidt
|
|
|
|
template<class vtype> accelerator_inline iScalar<vtype> SpTa(const iScalar<vtype>&r)
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal = SpTa(r._internal);
|
|
return ret;
|
|
}
|
|
template<class vtype,int N> accelerator_inline iVector<vtype,N> SpTa(const iVector<vtype,N>&r)
|
|
{
|
|
iVector<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
ret._internal[i] = SpTa(r._internal[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
template<class vtype,int N> accelerator_inline iMatrix<vtype,N> SpTa(const iMatrix<vtype,N> &arg)
|
|
{
|
|
iMatrix<vtype,N> ret(arg);
|
|
vtype nrm;
|
|
vtype inner;
|
|
vtype tmp;
|
|
|
|
for(int c1=0;c1<N/2;c1++)
|
|
{
|
|
|
|
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
|
|
{
|
|
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
|
|
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
|
|
zeroit(pr);
|
|
zeroit(prn);
|
|
|
|
for(int c=0; c<N; c++)
|
|
{
|
|
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
|
|
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
|
|
}
|
|
|
|
|
|
for(int c=0; c<N; c++)
|
|
{
|
|
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
|
|
}
|
|
}
|
|
|
|
zeroit(inner);
|
|
for(int c2=0;c2<N;c2++)
|
|
{
|
|
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
|
}
|
|
|
|
nrm = sqrt(inner);
|
|
nrm = 1.0/nrm;
|
|
for(int c2=0;c2<N;c2++)
|
|
{
|
|
ret._internal[c1][c2]*= nrm;
|
|
}
|
|
|
|
|
|
for(int c2=0;c2<N/2;c2++)
|
|
{
|
|
tmp = conjugate(ret._internal[c1][c2]); // (up-left)* of the old matrix
|
|
ret._internal[c1+N/2][c2+N/2] = -tmp; // down right in the new matrix = -(up-left)* of the old matrix
|
|
}
|
|
|
|
for(int c2=N/2;c2<N;c2++)
|
|
{
|
|
tmp = conjugate(ret._internal[c1][c2]); // (up-right)* of the old
|
|
ret._internal[c1+N/2][c2-N/2] = tmp; // down left in the new matrix = (up-right)* of the old
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
return Ta(ret);
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////
|
|
// ProjectOnGroup function for scalar, vector, matrix
|
|
// Projects on orthogonal, unitary group
|
|
///////////////////////////////////////////////
|
|
|
|
|
|
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnGroup(const iScalar<vtype>&r)
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal = ProjectOnGroup(r._internal);
|
|
return ret;
|
|
}
|
|
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnGroup(const iVector<vtype,N>&r)
|
|
{
|
|
iVector<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
ret._internal[i] = ProjectOnGroup(r._internal[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
|
|
{
|
|
// need a check for the group type?
|
|
iMatrix<vtype,N> ret(arg);
|
|
vtype nrm;
|
|
vtype inner;
|
|
for(int c1=0;c1<N;c1++){
|
|
|
|
// Normalises row c1
|
|
zeroit(inner);
|
|
for(int c2=0;c2<N;c2++)
|
|
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
|
|
|
nrm = sqrt(inner);
|
|
nrm = 1.0/nrm;
|
|
for(int c2=0;c2<N;c2++)
|
|
ret._internal[c1][c2]*= nrm;
|
|
|
|
// Remove c1 from rows c1+1...N-1
|
|
for (int b=c1+1; b<N; ++b){
|
|
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
|
|
zeroit(pr);
|
|
for(int c=0; c<N; ++c)
|
|
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c];
|
|
|
|
for(int c=0; c<N; ++c){
|
|
ret._internal[b][c] -= pr * ret._internal[c1][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Normalise last row
|
|
{
|
|
int c1 = N-1;
|
|
zeroit(inner);
|
|
for(int c2=0;c2<N;c2++)
|
|
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
|
|
|
nrm = sqrt(inner);
|
|
nrm = 1.0/nrm;
|
|
for(int c2=0;c2<N;c2++)
|
|
ret._internal[c1][c2]*= nrm;
|
|
}
|
|
// assuming the determinant is ok
|
|
return ret;
|
|
}
|
|
|
|
// re-do for sp2n
|
|
|
|
// Ta cannot be defined here for Sp2n because I need the generators from the Sp class
|
|
// It is defined in gauge impl types
|
|
|
|
template<class vtype> accelerator_inline iScalar<vtype> ProjectOnSpGroup(const iScalar<vtype>&r)
|
|
{
|
|
iScalar<vtype> ret;
|
|
ret._internal = ProjectOnSpGroup(r._internal);
|
|
return ret;
|
|
}
|
|
template<class vtype,int N> accelerator_inline iVector<vtype,N> ProjectOnSpGroup(const iVector<vtype,N>&r)
|
|
{
|
|
iVector<vtype,N> ret;
|
|
for(int i=0;i<N;i++){
|
|
ret._internal[i] = ProjectOnSpGroup(r._internal[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
// int N is 2n in Sp(2n)
|
|
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
|
|
accelerator_inline iMatrix<vtype,N> ProjectOnSpGroup(const iMatrix<vtype,N> &arg)
|
|
{
|
|
// need a check for the group type?
|
|
iMatrix<vtype,N> ret(arg);
|
|
vtype nrm;
|
|
vtype inner;
|
|
vtype tmp;
|
|
|
|
for(int c1=0;c1<N/2;c1++)
|
|
{
|
|
|
|
for (int b=0; b<c1; b++) // remove the b-rows from U_c1
|
|
{
|
|
decltype(ret._internal[b][b]*ret._internal[b][b]) pr;
|
|
decltype(ret._internal[b][b]*ret._internal[b][b]) prn;
|
|
zeroit(pr);
|
|
zeroit(prn);
|
|
|
|
for(int c=0; c<N; c++)
|
|
{
|
|
pr += conjugate(ret._internal[c1][c])*ret._internal[b][c]; // <U_c1 | U_b >
|
|
prn += conjugate(ret._internal[c1][c])*ret._internal[b+N/2][c]; // <U_c1 | U_{b+N} >
|
|
}
|
|
|
|
|
|
for(int c=0; c<N; c++)
|
|
{
|
|
ret._internal[c1][c] -= (conjugate(pr) * ret._internal[b][c] + conjugate(prn) * ret._internal[b+N/2][c] ); // U_c1 -= ( <U_c1 | U_b > U_b + <U_c1 | U_{b+N} > U_{b+N} )
|
|
}
|
|
}
|
|
|
|
zeroit(inner);
|
|
for(int c2=0;c2<N;c2++)
|
|
{
|
|
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
|
|
}
|
|
|
|
nrm = sqrt(inner);
|
|
nrm = 1.0/nrm;
|
|
for(int c2=0;c2<N;c2++)
|
|
{
|
|
ret._internal[c1][c2]*= nrm;
|
|
}
|
|
|
|
|
|
for(int c2=0;c2<N/2;c2++)
|
|
{
|
|
tmp = conjugate(ret._internal[c1][c2]); // (up-left)* of the old matrix
|
|
ret._internal[c1+N/2][c2+N/2] = tmp; // down right in the new matrix = (up-left)* of the old matrix
|
|
}
|
|
|
|
for(int c2=N/2;c2<N;c2++)
|
|
{
|
|
tmp = conjugate(ret._internal[c1][c2]); // (up-right)* of the old
|
|
ret._internal[c1+N/2][c2-N/2] = -tmp; // down left in the new matrix = -(up-right)* of the old
|
|
}
|
|
|
|
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
NAMESPACE_END(Grid);
|
|
|
|
#endif
|