mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
980 lines
30 KiB
C++
980 lines
30 KiB
C++
/*************************************************************************************
|
||
|
||
Grid physics library, www.github.com/paboyle/Grid
|
||
|
||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
|
||
|
||
Copyright (C) 2015
|
||
|
||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||
Author: Chulwoo Jung
|
||
Author: Yong-Chull Jang <ypj@quark.phy.bnl.gov>
|
||
Author: Guido Cossu
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
||
See the full license in the file "LICENSE" in the top level distribution directory
|
||
*************************************************************************************/
|
||
/* END LEGAL */
|
||
#ifndef GRID_IRBL_H
|
||
#define GRID_IRBL_H
|
||
|
||
#include <string.h> //memset
|
||
|
||
#define Glog std::cout << GridLogMessage
|
||
|
||
namespace Grid {
|
||
|
||
enum class LanczosType { irbl, rbl };
|
||
|
||
/////////////////////////////////////////////////////////////
|
||
// Implicitly restarted block lanczos
|
||
/////////////////////////////////////////////////////////////
|
||
template<class Field>
|
||
class ImplicitlyRestartedBlockLanczos {
|
||
|
||
private:
|
||
|
||
std::string cname = std::string("ImplicitlyRestartedBlockLanczos");
|
||
int MaxIter; // Max iterations
|
||
int Nstop; // Number of evecs checked for convergence
|
||
int Nu; // Numbeer of vecs in the unit block
|
||
int Nk; // Number of converged sought
|
||
int Nm; // total number of vectors
|
||
int Nblock_k; // Nk/Nu
|
||
int Nblock_m; // Nm/Nu
|
||
int Nconv_test_interval; // Number of skipped vectors when checking a convergence
|
||
RealD eresid;
|
||
IRLdiagonalisation diagonalisation;
|
||
////////////////////////////////////
|
||
// Embedded objects
|
||
////////////////////////////////////
|
||
SortEigen<Field> _sort;
|
||
LinearOperatorBase<Field> &_Linop;
|
||
OperatorFunction<Field> &_poly;
|
||
|
||
/////////////////////////
|
||
// Constructor
|
||
/////////////////////////
|
||
public:
|
||
ImplicitlyRestartedBlockLanczos(LinearOperatorBase<Field> &Linop, // op
|
||
OperatorFunction<Field> & poly, // polynomial
|
||
int _Nstop, // really sought vecs
|
||
int _Nconv_test_interval, // conv check interval
|
||
int _Nu, // vecs in the unit block
|
||
int _Nk, // sought vecs
|
||
int _Nm, // total vecs
|
||
RealD _eresid, // resid in lmd deficit
|
||
int _MaxIter, // Max iterations
|
||
IRLdiagonalisation _diagonalisation = IRLdiagonaliseWithEigen)
|
||
: _Linop(Linop), _poly(poly),
|
||
Nstop(_Nstop), Nconv_test_interval(_Nconv_test_interval),
|
||
Nu(_Nu), Nk(_Nk), Nm(_Nm),
|
||
Nblock_m(_Nm/_Nu), Nblock_k(_Nk/_Nu),
|
||
//eresid(_eresid), MaxIter(10),
|
||
eresid(_eresid), MaxIter(_MaxIter),
|
||
diagonalisation(_diagonalisation)
|
||
{ assert( (Nk%Nu==0) && (Nm%Nu==0) ); };
|
||
|
||
////////////////////////////////
|
||
// Helpers
|
||
////////////////////////////////
|
||
static RealD normalize(Field& v)
|
||
{
|
||
RealD nn = norm2(v);
|
||
nn = sqrt(nn);
|
||
v = v * (1.0/nn);
|
||
return nn;
|
||
}
|
||
|
||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||
{
|
||
typedef typename Field::scalar_type MyComplex;
|
||
MyComplex ip;
|
||
|
||
for(int j=0; j<k; ++j){
|
||
ip = innerProduct(evec[j],w);
|
||
w = w - ip * evec[j];
|
||
}
|
||
normalize(w);
|
||
}
|
||
|
||
void orthogonalize_blockhead(Field& w, std::vector<Field>& evec, int k, int Nu)
|
||
{
|
||
typedef typename Field::scalar_type MyComplex;
|
||
MyComplex ip;
|
||
|
||
for(int j=0; j<k; ++j){
|
||
ip = innerProduct(evec[j*Nu],w);
|
||
w = w - ip * evec[j*Nu];
|
||
}
|
||
normalize(w);
|
||
}
|
||
|
||
void calc(std::vector<RealD>& eval,
|
||
std::vector<Field>& evec,
|
||
const std::vector<Field>& src, int& Nconv, LanczosType Impl)
|
||
{
|
||
switch (Impl) {
|
||
case LanczosType::irbl:
|
||
calc_irbl(eval,evec,src,Nconv);
|
||
break;
|
||
|
||
case LanczosType::rbl:
|
||
calc_rbl(eval,evec,src,Nconv);
|
||
break;
|
||
}
|
||
}
|
||
|
||
void calc_irbl(std::vector<RealD>& eval,
|
||
std::vector<Field>& evec,
|
||
const std::vector<Field>& src, int& Nconv)
|
||
{
|
||
std::string fname = std::string(cname+"::calc_irbl()");
|
||
GridBase *grid = evec[0]._grid;
|
||
assert(grid == src[0]._grid);
|
||
assert( Nu = src.size() );
|
||
|
||
Glog << std::string(74,'*') << std::endl;
|
||
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||
Glog << std::string(74,'*') << std::endl;
|
||
Glog <<" -- seek Nk = "<< Nk <<" vectors"<< std::endl;
|
||
Glog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
||
Glog <<" -- total Nm = "<< Nm <<" vectors"<< std::endl;
|
||
Glog <<" -- size of eval = "<< eval.size() << std::endl;
|
||
Glog <<" -- size of evec = "<< evec.size() << std::endl;
|
||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||
Glog << "Diagonalisation is Eigen "<< std::endl;
|
||
} else {
|
||
abort();
|
||
}
|
||
Glog << std::string(74,'*') << std::endl;
|
||
|
||
assert(Nm == evec.size() && Nm == eval.size());
|
||
|
||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<RealD> eval2(Nm);
|
||
std::vector<RealD> resid(Nk);
|
||
|
||
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
|
||
std::vector<int> Iconv(Nm);
|
||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||
|
||
std::vector<Field> f(Nu,grid);
|
||
std::vector<Field> f_copy(Nu,grid);
|
||
Field v(grid);
|
||
|
||
Nconv = 0;
|
||
|
||
RealD beta_k;
|
||
|
||
// set initial vector
|
||
for (int i=0; i<Nu; ++i) {
|
||
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||
evec[i] = src[i];
|
||
orthogonalize(evec[i],evec,i);
|
||
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||
}
|
||
|
||
// initial Nblock_k steps
|
||
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||
|
||
// restarting loop begins
|
||
int iter;
|
||
for(iter = 0; iter<MaxIter; ++iter){
|
||
|
||
Glog <<"#Restart iteration = "<< iter << std::endl;
|
||
// additional (Nblock_m - Nblock_k) steps
|
||
for(int b=Nblock_k; b<Nblock_m; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||
|
||
// getting eigenvalues
|
||
for(int u=0; u<Nu; ++u){
|
||
for(int k=0; k<Nm; ++k){
|
||
lmd2[u][k] = lmd[u][k];
|
||
lme2[u][k] = lme[u][k];
|
||
}
|
||
}
|
||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||
diagonalize(eval2,lmd2,lme2,Nu,Nm,Nm,Qt,grid);
|
||
_sort.push(eval2,Nm);
|
||
Glog << "#Ritz value before shift: "<< std::endl;
|
||
for(int i=0; i<Nm; ++i){
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||
}
|
||
|
||
//----------------------------------------------------------------------
|
||
if ( Nm>Nk ) {
|
||
Glog <<" #Apply shifted QR transformations "<<std::endl;
|
||
//int k2 = Nk+Nu;
|
||
int k2 = Nk;
|
||
|
||
Eigen::MatrixXcd BTDM = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||
Q = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||
|
||
unpackHermitBlockTriDiagMatToEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||
|
||
for(int ip=Nk; ip<Nm; ++ip){
|
||
shiftedQRDecompEigen(BTDM,Nu,Nm,eval2[ip],Q);
|
||
}
|
||
|
||
packHermitBlockTriDiagMatfromEigen(lmd,lme,Nu,Nblock_m,Nm,Nm,BTDM);
|
||
|
||
for(int i=0; i<k2; ++i) B[i] = 0.0;
|
||
for(int j=0; j<k2; ++j){
|
||
for(int k=0; k<Nm; ++k){
|
||
B[j].checkerboard = evec[k].checkerboard;
|
||
B[j] += evec[k]*Q(k,j);
|
||
}
|
||
}
|
||
for(int i=0; i<k2; ++i) evec[i] = B[i];
|
||
|
||
// reconstruct initial vector for additional pole space
|
||
blockwiseStep(lmd,lme,evec,f,f_copy,Nblock_k-1);
|
||
|
||
// getting eigenvalues
|
||
for(int u=0; u<Nu; ++u){
|
||
for(int k=0; k<Nm; ++k){
|
||
lmd2[u][k] = lmd[u][k];
|
||
lme2[u][k] = lme[u][k];
|
||
}
|
||
}
|
||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||
diagonalize(eval2,lmd2,lme2,Nu,Nk,Nm,Qt,grid);
|
||
_sort.push(eval2,Nk);
|
||
Glog << "#Ritz value after shift: "<< std::endl;
|
||
for(int i=0; i<Nk; ++i){
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||
}
|
||
}
|
||
//----------------------------------------------------------------------
|
||
|
||
// Convergence test
|
||
Glog <<" #Convergence test: "<<std::endl;
|
||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||
for(int j = 0; j<Nk; ++j){
|
||
for(int k = 0; k<Nk; ++k){
|
||
B[j].checkerboard = evec[k].checkerboard;
|
||
B[j] += evec[k]*Qt(k,j);
|
||
}
|
||
}
|
||
|
||
Nconv = 0;
|
||
for(int i=0; i<Nk; ++i){
|
||
|
||
_Linop.HermOp(B[i],v);
|
||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||
RealD vden = norm2(B[i]);
|
||
eval2[i] = vnum/vden;
|
||
v -= eval2[i]*B[i];
|
||
RealD vv = norm2(v);
|
||
resid[i] = vv;
|
||
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||
|
||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||
//if( (vv<eresid*eresid) && (i == Nconv) ){
|
||
if (vv<eresid*eresid) {
|
||
Iconv[Nconv] = i;
|
||
++Nconv;
|
||
}
|
||
|
||
} // i-loop end
|
||
|
||
Glog <<" #modes converged: "<<Nconv<<std::endl;
|
||
for(int i=0; i<Nconv; ++i){
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<Iconv[i]<<"] ";
|
||
std::cout << "eval_conv = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[Iconv[i]];
|
||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< resid[Iconv[i]]<< std::endl;
|
||
}
|
||
|
||
if ( Nconv>=Nstop ) break;
|
||
|
||
} // end of iter loop
|
||
|
||
Glog << std::string(74,'*') << std::endl;
|
||
if ( Nconv<Nstop ) {
|
||
Glog << fname + " NOT converged ; Summary :\n";
|
||
} else {
|
||
Glog << fname + " CONVERGED ; Summary :\n";
|
||
// Sort convered eigenpairs.
|
||
eval.resize(Nconv);
|
||
evec.resize(Nconv,grid);
|
||
for(int i=0; i<Nconv; ++i){
|
||
eval[i] = eval2[Iconv[i]];
|
||
evec[i] = B[Iconv[i]];
|
||
}
|
||
_sort.push(eval,evec,Nconv);
|
||
}
|
||
Glog << std::string(74,'*') << std::endl;
|
||
Glog << " -- Iterations = "<< iter << "\n";
|
||
//Glog << " -- beta(k) = "<< beta_k << "\n";
|
||
Glog << " -- Nconv = "<< Nconv << "\n";
|
||
Glog << std::string(74,'*') << std::endl;
|
||
|
||
}
|
||
|
||
|
||
void calc_rbl(std::vector<RealD>& eval,
|
||
std::vector<Field>& evec,
|
||
const std::vector<Field>& src, int& Nconv)
|
||
{
|
||
std::string fname = std::string(cname+"::calc_rbl()");
|
||
GridBase *grid = evec[0]._grid;
|
||
assert(grid == src[0]._grid);
|
||
assert( Nu = src.size() );
|
||
|
||
int Np = (Nm-Nk);
|
||
if (Np > 0 && MaxIter > 1) Np /= MaxIter;
|
||
int Nblock_p = Np/Nu;
|
||
|
||
Glog << std::string(74,'*') << std::endl;
|
||
Glog << fname + " starting iteration 0 / "<< MaxIter<< std::endl;
|
||
Glog << std::string(74,'*') << std::endl;
|
||
Glog <<" -- seek (min) Nk = "<< Nk <<" vectors"<< std::endl;
|
||
Glog <<" -- seek (inc) Np = "<< Np <<" vectors"<< std::endl;
|
||
Glog <<" -- seek (max) Nm = "<< Nm <<" vectors"<< std::endl;
|
||
Glog <<" -- accept Nstop = "<< Nstop <<" vectors"<< std::endl;
|
||
Glog <<" -- size of eval = "<< eval.size() << std::endl;
|
||
Glog <<" -- size of evec = "<< evec.size() << std::endl;
|
||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||
Glog << "Diagonalisation is Eigen "<< std::endl;
|
||
} else {
|
||
abort();
|
||
}
|
||
Glog << std::string(74,'*') << std::endl;
|
||
|
||
assert(Nm == evec.size() && Nm == eval.size());
|
||
|
||
std::vector<std::vector<ComplexD>> lmd(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<std::vector<ComplexD>> lme(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<std::vector<ComplexD>> lmd2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<std::vector<ComplexD>> lme2(Nu,std::vector<ComplexD>(Nm,0.0));
|
||
std::vector<RealD> eval2(Nk);
|
||
std::vector<RealD> resid(Nm);
|
||
|
||
Eigen::MatrixXcd Qt = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
|
||
std::vector<int> Iconv(Nm);
|
||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||
|
||
std::vector<Field> f(Nu,grid);
|
||
std::vector<Field> f_copy(Nu,grid);
|
||
Field v(grid);
|
||
|
||
Nconv = 0;
|
||
|
||
RealD beta_k;
|
||
|
||
// set initial vector
|
||
for (int i=0; i<Nu; ++i) {
|
||
Glog << "norm2(src[" << i << "])= "<< norm2(src[i]) << std::endl;
|
||
evec[i] = src[i];
|
||
orthogonalize(evec[i],evec,i);
|
||
Glog << "norm2(evec[" << i << "])= "<< norm2(evec[i]) << std::endl;
|
||
}
|
||
|
||
// initial Nblock_k steps
|
||
for(int b=0; b<Nblock_k; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||
|
||
// restarting loop begins
|
||
int iter;
|
||
int Nblock_l, Nblock_r;
|
||
int Nl, Nr;
|
||
int Nconv_guess = 0;
|
||
|
||
for(iter = 0; iter<MaxIter; ++iter){
|
||
|
||
Glog <<"#Restart iteration = "<< iter << std::endl;
|
||
|
||
Nblock_l = Nblock_k + iter*Nblock_p;
|
||
Nblock_r = Nblock_l + Nblock_p;
|
||
Nl = Nblock_l*Nu;
|
||
Nr = Nblock_r*Nu;
|
||
eval2.resize(Nr);
|
||
|
||
// additional Nblock_p steps
|
||
for(int b=Nblock_l; b<Nblock_r; ++b) blockwiseStep(lmd,lme,evec,f,f_copy,b);
|
||
|
||
// getting eigenvalues
|
||
for(int u=0; u<Nu; ++u){
|
||
for(int k=0; k<Nr; ++k){
|
||
lmd2[u][k] = lmd[u][k];
|
||
lme2[u][k] = lme[u][k];
|
||
}
|
||
}
|
||
Qt = Eigen::MatrixXcd::Identity(Nr,Nr);
|
||
diagonalize(eval2,lmd2,lme2,Nu,Nr,Nr,Qt,grid);
|
||
_sort.push(eval2,Nr);
|
||
Glog << "#Ritz value: "<< std::endl;
|
||
for(int i=0; i<Nr; ++i){
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||
std::cout << "Rval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[i] << std::endl;
|
||
}
|
||
|
||
// Convergence test
|
||
Glog <<" #Convergence test: "<<std::endl;
|
||
Nconv = 0;
|
||
for(int k = 0; k<Nr; ++k) B[k]=0.0;
|
||
for(int j = 0; j<Nr; j+=Nconv_test_interval){
|
||
if ( j/Nconv_test_interval == Nconv ) {
|
||
Glog <<" #rotation for next check point evec"
|
||
<< std::setw(4)<< std::setiosflags(std::ios_base::right)
|
||
<< "["<< j <<"]" <<std::endl;
|
||
for(int k = 0; k<Nr; ++k){
|
||
B[j].checkerboard = evec[k].checkerboard;
|
||
B[j] += evec[k]*Qt(k,j);
|
||
}
|
||
|
||
_Linop.HermOp(B[j],v);
|
||
RealD vnum = real(innerProduct(B[j],v)); // HermOp.
|
||
RealD vden = norm2(B[j]);
|
||
eval2[j] = vnum/vden;
|
||
v -= eval2[j]*B[j];
|
||
RealD vv = norm2(v);
|
||
resid[j] = vv;
|
||
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<j<<"] ";
|
||
std::cout << "eval = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[j];
|
||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||
|
||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||
//if( (vv<eresid*eresid) && (i == Nconv) ){
|
||
if (vv<eresid*eresid) {
|
||
Iconv[Nconv] = j;
|
||
++Nconv;
|
||
}
|
||
} else {
|
||
break;
|
||
}
|
||
} // j-loop end
|
||
|
||
Glog <<" #modes converged: "<<Nconv<<std::endl;
|
||
for(int i=0; i<Nconv; ++i){
|
||
std::cout.precision(13);
|
||
std::cout << "[" << std::setw(4)<< std::setiosflags(std::ios_base::right) <<Iconv[i]<<"] ";
|
||
std::cout << "eval_conv = "<<std::setw(20)<< std::setiosflags(std::ios_base::left)<< eval2[Iconv[i]];
|
||
std::cout << " resid^2 = "<< std::setw(20)<< std::setiosflags(std::ios_base::right)<< resid[Iconv[i]]<< std::endl;
|
||
}
|
||
|
||
(Nconv > 0 ) ? Nconv_guess = 1 + (Nconv-1)*Nconv_test_interval : Nconv_guess = 0;
|
||
if ( Nconv_guess >= Nstop ) break;
|
||
|
||
} // end of iter loop
|
||
|
||
Glog << std::string(74,'*') << std::endl;
|
||
if ( Nconv_guess < Nstop ) {
|
||
Glog << fname + " NOT converged ; Summary :\n";
|
||
} else {
|
||
Glog << fname + " CONVERGED ; Summary :\n";
|
||
// Sort convered eigenpairs.
|
||
eval.resize(Nconv);
|
||
evec.resize(Nconv,grid);
|
||
for(int i=0; i<Nconv; ++i){
|
||
eval[i] = eval2[Iconv[i]];
|
||
evec[i] = B[Iconv[i]];
|
||
}
|
||
_sort.push(eval,evec,Nconv);
|
||
}
|
||
Glog << std::string(74,'*') << std::endl;
|
||
Glog << " -- Iterations = "<< iter << "\n";
|
||
//Glog << " -- beta(k) = "<< beta_k << "\n";
|
||
Glog << " -- Nconv = "<< Nconv << "\n";
|
||
Glog << " -- Nconv (guess) = "<< Nconv_guess << "\n";
|
||
Glog << std::string(74,'*') << std::endl;
|
||
|
||
}
|
||
|
||
private:
|
||
void blockwiseStep(std::vector<std::vector<ComplexD>>& lmd,
|
||
std::vector<std::vector<ComplexD>>& lme,
|
||
std::vector<Field>& evec,
|
||
std::vector<Field>& w,
|
||
std::vector<Field>& w_copy,
|
||
int b)
|
||
{
|
||
const RealD tiny = 1.0e-20;
|
||
|
||
int Nu = w.size();
|
||
int Nm = evec.size();
|
||
assert( b < Nm/Nu );
|
||
|
||
// converts block index to full indicies for an interval [L,R)
|
||
int L = Nu*b;
|
||
int R = Nu*(b+1);
|
||
|
||
Real beta;
|
||
|
||
// 3. wk:=Avk−βkv_{k−1}
|
||
for (int k=L, u=0; k<R; ++k, ++u) {
|
||
_poly(_Linop,evec[k],w[u]);
|
||
}
|
||
|
||
if (b>0) {
|
||
for (int u=0; u<Nu; ++u) {
|
||
//for (int k=L-Nu; k<L; ++k) {
|
||
for (int k=L-Nu+u; k<L; ++k) {
|
||
w[u] = w[u] - evec[k] * conjugate(lme[u][k]);
|
||
}
|
||
}
|
||
}
|
||
|
||
// 4. αk:=(vk,wk)
|
||
//for (int u=0; u<Nu; ++u) {
|
||
// for (int k=L; k<R; ++k) {
|
||
// lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
||
// }
|
||
// lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
||
//}
|
||
for (int u=0; u<Nu; ++u) {
|
||
for (int k=L+u; k<R; ++k) {
|
||
lmd[u][k] = innerProduct(evec[k],w[u]); // lmd = transpose of alpha
|
||
lmd[k-L][u+L] = conjugate(lmd[u][k]); // force hermicity
|
||
}
|
||
lmd[u][L+u] = real(lmd[u][L+u]); // force diagonal to be real
|
||
}
|
||
|
||
// 5. wk:=wk−αkvk
|
||
for (int u=0; u<Nu; ++u) {
|
||
for (int k=L; k<R; ++k) {
|
||
w[u] = w[u] - evec[k]*lmd[u][k];
|
||
}
|
||
w_copy[u] = w[u];
|
||
}
|
||
|
||
// In block version, the steps 6 and 7 in Lanczos construction is
|
||
// replaced by the QR decomposition of new basis block.
|
||
// It results block version beta and orthonormal block basis.
|
||
// Here, QR decomposition is done by using Gram-Schmidt.
|
||
for (int u=0; u<Nu; ++u) {
|
||
for (int k=L; k<R; ++k) {
|
||
lme[u][k] = 0.0;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
beta = normalize(w[0]);
|
||
for (int u=1; u<Nu; ++u) {
|
||
//orthogonalize(w[u],w_copy,u);
|
||
orthogonalize(w[u],w,u);
|
||
}
|
||
#else
|
||
// re-orthogonalization for numerical stability
|
||
for (int u=0; u<Nu; ++u) {
|
||
orthogonalize(w[u],evec,R);
|
||
}
|
||
// QR part
|
||
for (int u=1; u<Nu; ++u) {
|
||
orthogonalize(w[u],w,u);
|
||
}
|
||
#endif
|
||
|
||
for (int u=0; u<Nu; ++u) {
|
||
//for (int v=0; v<Nu; ++v) {
|
||
for (int v=u; v<Nu; ++v) {
|
||
lme[u][L+v] = innerProduct(w[u],w_copy[v]);
|
||
}
|
||
lme[u][L+u] = real(lme[u][L+u]); // force diagonal to be real
|
||
}
|
||
//lme[0][L] = beta;
|
||
|
||
for (int u=0; u<Nu; ++u) {
|
||
Glog << "norm2(w[" << u << "])= "<< norm2(w[u]) << std::endl;
|
||
for (int k=L+u; k<R; ++k) {
|
||
Glog <<" In block "<< b << ",";
|
||
std::cout <<" beta[" << u << "," << k-L << "] = ";
|
||
std::cout << lme[u][k] << std::endl;
|
||
}
|
||
}
|
||
#if 0
|
||
// re-orthogonalization for numerical stability
|
||
if (b>0) {
|
||
for (int u=0; u<Nu; ++u) {
|
||
orthogonalize(w[u],evec,R);
|
||
}
|
||
for (int u=1; u<Nu; ++u) {
|
||
orthogonalize(w[u],w,u);
|
||
}
|
||
}
|
||
//if (b>0) {
|
||
// orthogonalize_blockhead(w[0],evec,b,Nu);
|
||
// for (int u=1; u<Nu; ++u) {
|
||
// orthogonalize(w[u],w,u);
|
||
// }
|
||
//}
|
||
#endif
|
||
|
||
if (b < Nm/Nu-1) {
|
||
for (int u=0; u<Nu; ++u) {
|
||
evec[R+u] = w[u];
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
|
||
void diagonalize_Eigen(std::vector<RealD>& eval,
|
||
std::vector<std::vector<ComplexD>>& lmd,
|
||
std::vector<std::vector<ComplexD>>& lme,
|
||
int Nu, int Nk, int Nm,
|
||
Eigen::MatrixXcd & Qt, // Nm x Nm
|
||
GridBase *grid)
|
||
{
|
||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||
assert( Nk <= Nm );
|
||
Eigen::MatrixXcd BlockTriDiag = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||
|
||
for ( int u=0; u<Nu; ++u ) {
|
||
for (int k=0; k<Nk; ++k ) {
|
||
BlockTriDiag(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||
}
|
||
}
|
||
|
||
for ( int u=0; u<Nu; ++u ) {
|
||
for (int k=Nu; k<Nk; ++k ) {
|
||
BlockTriDiag(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||
BlockTriDiag(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||
}
|
||
}
|
||
//std::cout << BlockTriDiag << std::endl;
|
||
|
||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXcd> eigensolver(BlockTriDiag);
|
||
|
||
for (int i = 0; i < Nk; i++) {
|
||
eval[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||
}
|
||
for (int i = 0; i < Nk; i++) {
|
||
for (int j = 0; j < Nk; j++) {
|
||
Qt(j,Nk-1-i) = eigensolver.eigenvectors()(j,i);
|
||
//Qt(Nk-1-i,j) = eigensolver.eigenvectors()(i,j);
|
||
//Qt(i,j) = eigensolver.eigenvectors()(i,j);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void diagonalize(std::vector<RealD>& eval,
|
||
std::vector<std::vector<ComplexD>>& lmd,
|
||
std::vector<std::vector<ComplexD>>& lme,
|
||
int Nu, int Nk, int Nm,
|
||
Eigen::MatrixXcd & Qt,
|
||
GridBase *grid)
|
||
{
|
||
Qt = Eigen::MatrixXcd::Identity(Nm,Nm);
|
||
if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||
diagonalize_Eigen(eval,lmd,lme,Nu,Nk,Nm,Qt,grid);
|
||
} else {
|
||
assert(0);
|
||
}
|
||
}
|
||
|
||
|
||
void unpackHermitBlockTriDiagMatToEigen(
|
||
std::vector<std::vector<ComplexD>>& lmd,
|
||
std::vector<std::vector<ComplexD>>& lme,
|
||
int Nu, int Nb, int Nk, int Nm,
|
||
Eigen::MatrixXcd& M)
|
||
{
|
||
//Glog << "unpackHermitBlockTriDiagMatToEigen() begin" << '\n';
|
||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||
assert( Nk <= Nm );
|
||
M = Eigen::MatrixXcd::Zero(Nk,Nk);
|
||
|
||
// rearrange
|
||
for ( int u=0; u<Nu; ++u ) {
|
||
for (int k=0; k<Nk; ++k ) {
|
||
M(k,u+(k/Nu)*Nu) = lmd[u][k];
|
||
}
|
||
}
|
||
|
||
for ( int u=0; u<Nu; ++u ) {
|
||
for (int k=Nu; k<Nk; ++k ) {
|
||
M(k-Nu,u+(k/Nu)*Nu) = conjugate(lme[u][k-Nu]);
|
||
M(u+(k/Nu)*Nu,k-Nu) = lme[u][k-Nu];
|
||
}
|
||
}
|
||
//Glog << "unpackHermitBlockTriDiagMatToEigen() end" << endl;
|
||
}
|
||
|
||
|
||
void packHermitBlockTriDiagMatfromEigen(
|
||
std::vector<std::vector<ComplexD>>& lmd,
|
||
std::vector<std::vector<ComplexD>>& lme,
|
||
int Nu, int Nb, int Nk, int Nm,
|
||
Eigen::MatrixXcd& M)
|
||
{
|
||
//Glog << "packHermitBlockTriDiagMatfromEigen() begin" << '\n';
|
||
assert( Nk%Nu == 0 && Nm%Nu == 0 );
|
||
assert( Nk <= Nm );
|
||
|
||
// rearrange
|
||
for ( int u=0; u<Nu; ++u ) {
|
||
for (int k=0; k<Nk; ++k ) {
|
||
lmd[u][k] = M(k,u+(k/Nu)*Nu);
|
||
}
|
||
}
|
||
|
||
for ( int u=0; u<Nu; ++u ) {
|
||
for (int k=Nu; k<Nk; ++k ) {
|
||
lme[u][k-Nu] = M(u+(k/Nu)*Nu,k-Nu);
|
||
}
|
||
}
|
||
//Glog << "packHermitBlockTriDiagMatfromEigen() end" << endl;
|
||
}
|
||
|
||
|
||
// assume the input matrix M is a band matrix
|
||
void shiftedQRDecompEigen(Eigen::MatrixXcd& M, int Nu, int Nm,
|
||
RealD Dsh,
|
||
Eigen::MatrixXcd& Qprod)
|
||
{
|
||
//Glog << "shiftedQRDecompEigen() begin" << '\n';
|
||
Eigen::MatrixXcd Q = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
Eigen::MatrixXcd R = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
Eigen::MatrixXcd Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
|
||
Mtmp = M;
|
||
for (int i=0; i<Nm; ++i ) {
|
||
Mtmp(i,i) = M(i,i) - Dsh;
|
||
}
|
||
|
||
Eigen::HouseholderQR<Eigen::MatrixXcd> QRD(Mtmp);
|
||
Q = QRD.householderQ();
|
||
R = QRD.matrixQR(); // upper triangular part is the R matrix.
|
||
// lower triangular part used to represent series
|
||
// of Q sequence.
|
||
|
||
// equivalent operation of Qprod *= Q
|
||
//M = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
|
||
//for (int i=0; i<Nm; ++i) {
|
||
// for (int j=0; j<Nm-2*(Nu+1); ++j) {
|
||
// for (int k=0; k<2*(Nu+1)+j; ++k) {
|
||
// M(i,j) += Qprod(i,k)*Q(k,j);
|
||
// }
|
||
// }
|
||
//}
|
||
//for (int i=0; i<Nm; ++i) {
|
||
// for (int j=Nm-2*(Nu+1); j<Nm; ++j) {
|
||
// for (int k=0; k<Nm; ++k) {
|
||
// M(i,j) += Qprod(i,k)*Q(k,j);
|
||
// }
|
||
// }
|
||
//}
|
||
|
||
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
|
||
for (int i=0; i<Nm; ++i) {
|
||
for (int j=0; j<Nm-(Nu+1); ++j) {
|
||
for (int k=0; k<Nu+1+j; ++k) {
|
||
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
|
||
}
|
||
}
|
||
}
|
||
for (int i=0; i<Nm; ++i) {
|
||
for (int j=Nm-(Nu+1); j<Nm; ++j) {
|
||
for (int k=0; k<Nm; ++k) {
|
||
Mtmp(i,j) += Qprod(i,k)*Q(k,j);
|
||
}
|
||
}
|
||
}
|
||
|
||
//static int ntimes = 2;
|
||
//for (int j=0; j<Nm-(ntimes*Nu); ++j) {
|
||
// for (int i=ntimes*Nu+j; i<Nm; ++i) {
|
||
// Mtmp(i,j) = 0.0;
|
||
// }
|
||
//}
|
||
//ntimes++;
|
||
|
||
Qprod = Mtmp;
|
||
|
||
// equivalent operation of M = Q.adjoint()*(M*Q)
|
||
Mtmp = Eigen::MatrixXcd::Zero(Nm,Nm);
|
||
|
||
for (int a=0, i=0, kmax=0; a<Nu+1; ++a) {
|
||
for (int j=0; j<Nm-a; ++j) {
|
||
i = j+a;
|
||
kmax = (Nu+1)+j;
|
||
if (kmax > Nm) kmax = Nm;
|
||
for (int k=i; k<kmax; ++k) {
|
||
Mtmp(i,j) += R(i,k)*Q(k,j);
|
||
}
|
||
Mtmp(j,i) = conj(Mtmp(i,j));
|
||
}
|
||
}
|
||
|
||
for (int i=0; i<Nm; ++i) {
|
||
Mtmp(i,i) = real(Mtmp(i,i)) + Dsh;
|
||
}
|
||
|
||
M = Mtmp;
|
||
|
||
//M = Q.adjoint()*(M*Q);
|
||
//for (int i=0; i<Nm; ++i) {
|
||
// for (int j=0; j<Nm; ++j) {
|
||
// if (i==j) M(i,i) = real(M(i,i));
|
||
// if (j>i) M(i,j) = conj(M(j,i));
|
||
// if (i-j > Nu || j-i > Nu) M(i,j) = 0.;
|
||
// }
|
||
//}
|
||
|
||
//Glog << "shiftedQRDecompEigen() end" << endl;
|
||
}
|
||
|
||
void exampleQRDecompEigen(void)
|
||
{
|
||
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(3,3);
|
||
Eigen::MatrixXd Q = Eigen::MatrixXd::Zero(3,3);
|
||
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(3,3);
|
||
Eigen::MatrixXd P = Eigen::MatrixXd::Zero(3,3);
|
||
|
||
A(0,0) = 12.0;
|
||
A(0,1) = -51.0;
|
||
A(0,2) = 4.0;
|
||
A(1,0) = 6.0;
|
||
A(1,1) = 167.0;
|
||
A(1,2) = -68.0;
|
||
A(2,0) = -4.0;
|
||
A(2,1) = 24.0;
|
||
A(2,2) = -41.0;
|
||
|
||
Glog << "matrix A before ColPivHouseholder" << std::endl;
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> QRD(A);
|
||
|
||
Glog << "matrix A after ColPivHouseholder" << std::endl;
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Glog << "HouseholderQ with sequence lenth = nonzeroPiviots" << std::endl;
|
||
Q = QRD.householderQ().setLength(QRD.nonzeroPivots());
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Glog << "HouseholderQ with sequence lenth = 1" << std::endl;
|
||
Q = QRD.householderQ().setLength(1);
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Glog << "HouseholderQ with sequence lenth = 2" << std::endl;
|
||
Q = QRD.householderQ().setLength(2);
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Glog << "matrixR" << std::endl;
|
||
R = QRD.matrixR();
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "R[" << i << "," << j << "] = " << R(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Glog << "rank = " << QRD.rank() << std::endl;
|
||
Glog << "threshold = " << QRD.threshold() << std::endl;
|
||
|
||
Glog << "matrixP" << std::endl;
|
||
P = QRD.colsPermutation();
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "P[" << i << "," << j << "] = " << P(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
|
||
Glog << "QR decomposition without column pivoting" << std::endl;
|
||
|
||
A(0,0) = 12.0;
|
||
A(0,1) = -51.0;
|
||
A(0,2) = 4.0;
|
||
A(1,0) = 6.0;
|
||
A(1,1) = 167.0;
|
||
A(1,2) = -68.0;
|
||
A(2,0) = -4.0;
|
||
A(2,1) = 24.0;
|
||
A(2,2) = -41.0;
|
||
|
||
Glog << "matrix A before Householder" << std::endl;
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Eigen::HouseholderQR<Eigen::MatrixXd> QRDplain(A);
|
||
|
||
Glog << "HouseholderQ" << std::endl;
|
||
Q = QRDplain.householderQ();
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "Q[" << i << "," << j << "] = " << Q(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
|
||
Glog << "matrix A after Householder" << std::endl;
|
||
for ( int i=0; i<3; i++ ) {
|
||
for ( int j=0; j<3; j++ ) {
|
||
Glog << "A[" << i << "," << j << "] = " << A(i,j) << '\n';
|
||
}
|
||
}
|
||
Glog << std::endl;
|
||
}
|
||
|
||
};
|
||
}
|
||
#undef Glog
|
||
#endif
|