mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
626 lines
19 KiB
C
626 lines
19 KiB
C
/*************************************************************************************
|
||
|
||
Grid physics library, www.github.com/paboyle/Grid
|
||
|
||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||
|
||
Copyright (C) 2015
|
||
|
||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||
Author: Chulwoo Jung
|
||
Author: Guido Cossu
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
||
See the full license in the file "LICENSE" in the top level distribution directory
|
||
*************************************************************************************/
|
||
/* END LEGAL */
|
||
#ifndef GRID_IRL_H
|
||
#define GRID_IRL_H
|
||
|
||
#include <string.h> //memset
|
||
|
||
namespace Grid {
|
||
|
||
enum IRLdiagonalisation {
|
||
IRLdiagonaliseWithDSTEGR,
|
||
IRLdiagonaliseWithQR,
|
||
IRLdiagonaliseWithEigen
|
||
};
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Helper class for sorting the evalues AND evectors by Field
|
||
// Use pointer swizzle on vectors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
template<class Field>
|
||
class SortEigen {
|
||
private:
|
||
static bool less_lmd(RealD left,RealD right){
|
||
return left > right;
|
||
}
|
||
static bool less_pair(std::pair<RealD,Field const*>& left,
|
||
std::pair<RealD,Field const*>& right){
|
||
return left.first > (right.first);
|
||
}
|
||
|
||
public:
|
||
void push(std::vector<RealD>& lmd,std::vector<Field>& evec,int N) {
|
||
|
||
////////////////////////////////////////////////////////////////////////
|
||
// PAB: FIXME: VERY VERY VERY wasteful: takes a copy of the entire vector set.
|
||
// : The vector reorder should be done by pointer swizzle somehow
|
||
////////////////////////////////////////////////////////////////////////
|
||
std::vector<Field> cpy(lmd.size(),evec[0]._grid);
|
||
for(int i=0;i<lmd.size();i++) cpy[i] = evec[i];
|
||
|
||
std::vector<std::pair<RealD, Field const*> > emod(lmd.size());
|
||
|
||
for(int i=0;i<lmd.size();++i) emod[i] = std::pair<RealD,Field const*>(lmd[i],&cpy[i]);
|
||
|
||
partial_sort(emod.begin(),emod.begin()+N,emod.end(),less_pair);
|
||
|
||
typename std::vector<std::pair<RealD, Field const*> >::iterator it = emod.begin();
|
||
for(int i=0;i<N;++i){
|
||
lmd[i]=it->first;
|
||
evec[i]=*(it->second);
|
||
++it;
|
||
}
|
||
}
|
||
void push(std::vector<RealD>& lmd,int N) {
|
||
std::partial_sort(lmd.begin(),lmd.begin()+N,lmd.end(),less_lmd);
|
||
}
|
||
bool saturated(RealD lmd, RealD thrs) {
|
||
return fabs(lmd) > fabs(thrs);
|
||
}
|
||
};
|
||
|
||
/////////////////////////////////////////////////////////////
|
||
// Implicitly restarted lanczos
|
||
/////////////////////////////////////////////////////////////
|
||
template<class Field>
|
||
class ImplicitlyRestartedLanczos {
|
||
|
||
private:
|
||
|
||
int MaxIter; // Max iterations
|
||
int Nstop; // Number of evecs checked for convergence
|
||
int Nk; // Number of converged sought
|
||
int Nm; // Nm -- total number of vectors
|
||
RealD eresid;
|
||
IRLdiagonalisation diagonalisation;
|
||
////////////////////////////////////
|
||
// Embedded objects
|
||
////////////////////////////////////
|
||
SortEigen<Field> _sort;
|
||
LinearOperatorBase<Field> &_Linop;
|
||
OperatorFunction<Field> &_poly;
|
||
|
||
/////////////////////////
|
||
// Constructor
|
||
/////////////////////////
|
||
public:
|
||
ImplicitlyRestartedLanczos(LinearOperatorBase<Field> &Linop, // op
|
||
OperatorFunction<Field> & poly, // polynomial
|
||
int _Nstop, // really sought vecs
|
||
int _Nk, // sought vecs
|
||
int _Nm, // total vecs
|
||
RealD _eresid, // resid in lmd deficit
|
||
int _MaxIter, // Max iterations
|
||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen ) :
|
||
_Linop(Linop), _poly(poly),
|
||
Nstop(_Nstop), Nk(_Nk), Nm(_Nm),
|
||
eresid(_eresid), MaxIter(_MaxIter),
|
||
diagonalisation(_diagonalisation)
|
||
{ };
|
||
|
||
////////////////////////////////
|
||
// Helpers
|
||
////////////////////////////////
|
||
static RealD normalise(Field& v)
|
||
{
|
||
RealD nn = norm2(v);
|
||
nn = sqrt(nn);
|
||
v = v * (1.0/nn);
|
||
return nn;
|
||
}
|
||
|
||
void orthogonalize(Field& w, std::vector<Field>& evec, int k)
|
||
{
|
||
typedef typename Field::scalar_type MyComplex;
|
||
MyComplex ip;
|
||
|
||
for(int j=0; j<k; ++j){
|
||
ip = innerProduct(evec[j],w);
|
||
w = w - ip * evec[j];
|
||
}
|
||
normalise(w);
|
||
}
|
||
|
||
/* Rudy Arthur's thesis pp.137
|
||
------------------------
|
||
Require: M > K P = M − K †
|
||
Compute the factorization AVM = VM HM + fM eM
|
||
repeat
|
||
Q=I
|
||
for i = 1,...,P do
|
||
QiRi =HM −θiI Q = QQi
|
||
H M = Q †i H M Q i
|
||
end for
|
||
βK =HM(K+1,K) σK =Q(M,K)
|
||
r=vK+1βK +rσK
|
||
VK =VM(1:M)Q(1:M,1:K)
|
||
HK =HM(1:K,1:K)
|
||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||
until convergence
|
||
*/
|
||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv)
|
||
{
|
||
|
||
GridBase *grid = evec[0]._grid;
|
||
assert(grid == src._grid);
|
||
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
std::cout << GridLogMessage <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
std::cout << GridLogMessage <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||
std::cout << GridLogMessage <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||
std::cout << GridLogMessage <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||
std::cout << GridLogMessage <<" -- size of eval = " << eval.size() << std::endl;
|
||
std::cout << GridLogMessage <<" -- size of evec = " << evec.size() << std::endl;
|
||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||
std::cout << GridLogMessage << "Diagonalisation is DSTEGR "<<std::endl;
|
||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||
std::cout << GridLogMessage << "Diagonalisation is QR "<<std::endl;
|
||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||
std::cout << GridLogMessage << "Diagonalisation is Eigen "<<std::endl;
|
||
}
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
|
||
assert(Nm == evec.size() && Nm == eval.size());
|
||
|
||
std::vector<RealD> lme(Nm);
|
||
std::vector<RealD> lme2(Nm);
|
||
std::vector<RealD> eval2(Nm);
|
||
|
||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||
|
||
std::vector<int> Iconv(Nm);
|
||
std::vector<Field> B(Nm,grid); // waste of space replicating
|
||
|
||
Field f(grid);
|
||
Field v(grid);
|
||
|
||
int k1 = 1;
|
||
int k2 = Nk;
|
||
|
||
Nconv = 0;
|
||
|
||
RealD beta_k;
|
||
|
||
// Set initial vector
|
||
evec[0] = src;
|
||
std::cout << GridLogMessage <<"norm2(src)= " << norm2(src)<<std::endl;
|
||
|
||
normalise(evec[0]);
|
||
std::cout << GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0]) <<std::endl;
|
||
|
||
// Initial Nk steps
|
||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||
|
||
// Restarting loop begins
|
||
int iter;
|
||
for(iter = 0; iter<MaxIter; ++iter){
|
||
|
||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||
|
||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||
|
||
f *= lme[Nm-1];
|
||
|
||
// getting eigenvalues
|
||
for(int k=0; k<Nm; ++k){
|
||
eval2[k] = eval[k+k1-1];
|
||
lme2[k] = lme[k+k1-1];
|
||
}
|
||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||
|
||
// sorting
|
||
_sort.push(eval2,Nm);
|
||
|
||
// Implicitly shifted QR transformations
|
||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||
for(int ip=k2; ip<Nm; ++ip){
|
||
// Eigen replacement for qr_decomp ???
|
||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||
}
|
||
|
||
for(int i=0; i<(Nk+1); ++i) B[i] = 0.0;
|
||
|
||
for(int j=k1-1; j<k2+1; ++j){
|
||
for(int k=0; k<Nm; ++k){
|
||
B[j].checkerboard = evec[k].checkerboard;
|
||
B[j] += Qt(j,k) * evec[k];
|
||
}
|
||
}
|
||
for(int j=k1-1; j<k2+1; ++j) evec[j] = B[j];
|
||
|
||
// Compressed vector f and beta(k2)
|
||
f *= Qt(k2-1,Nm-1);
|
||
f += lme[k2-1] * evec[k2];
|
||
beta_k = norm2(f);
|
||
beta_k = sqrt(beta_k);
|
||
std::cout<< GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||
|
||
RealD betar = 1.0/beta_k;
|
||
evec[k2] = betar * f;
|
||
lme[k2-1] = beta_k;
|
||
|
||
// Convergence test
|
||
for(int k=0; k<Nm; ++k){
|
||
eval2[k] = eval[k];
|
||
lme2[k] = lme[k];
|
||
}
|
||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||
|
||
for(int k = 0; k<Nk; ++k) B[k]=0.0;
|
||
|
||
for(int j = 0; j<Nk; ++j){
|
||
for(int k = 0; k<Nk; ++k){
|
||
B[j].checkerboard = evec[k].checkerboard;
|
||
B[j] += Qt(j,k) * evec[k];
|
||
}
|
||
}
|
||
|
||
Nconv = 0;
|
||
for(int i=0; i<Nk; ++i){
|
||
|
||
_Linop.HermOp(B[i],v);
|
||
|
||
RealD vnum = real(innerProduct(B[i],v)); // HermOp.
|
||
RealD vden = norm2(B[i]);
|
||
eval2[i] = vnum/vden;
|
||
v -= eval2[i]*B[i];
|
||
RealD vv = norm2(v);
|
||
|
||
std::cout.precision(13);
|
||
std::cout << GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<i<<"] ";
|
||
std::cout << "eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[i];
|
||
std::cout << " |H B[i] - eval[i]B[i]|^2 "<< std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv<< std::endl;
|
||
|
||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||
if((vv<eresid*eresid) && (i == Nconv) ){
|
||
Iconv[Nconv] = i;
|
||
++Nconv;
|
||
}
|
||
|
||
} // i-loop end
|
||
|
||
std::cout<< GridLogMessage <<" #modes converged: "<<Nconv<<std::endl;
|
||
|
||
if( Nconv>=Nstop ){
|
||
goto converged;
|
||
}
|
||
} // end of iter loop
|
||
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
std::cout<< GridLogError <<" ImplicitlyRestartedLanczos::calc() NOT converged.";
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
abort();
|
||
|
||
converged:
|
||
// Sorting
|
||
eval.resize(Nconv);
|
||
evec.resize(Nconv,grid);
|
||
for(int i=0; i<Nconv; ++i){
|
||
eval[i] = eval2[Iconv[i]];
|
||
evec[i] = B[Iconv[i]];
|
||
}
|
||
_sort.push(eval,evec,Nconv);
|
||
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
std::cout << GridLogMessage << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
std::cout << GridLogMessage << " -- Iterations = "<< iter << "\n";
|
||
std::cout << GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||
std::cout << GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||
std::cout << GridLogMessage <<"**************************************************************************"<< std::endl;
|
||
}
|
||
|
||
private:
|
||
/* Saad PP. 195
|
||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||
2. For k = 1,2,...,m Do:
|
||
3. wk:=Avk−βkv_{k−1}
|
||
4. αk:=(wk,vk) //
|
||
5. wk:=wk−αkvk // wk orthog vk
|
||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||
7. vk+1 := wk/βk+1
|
||
8. EndDo
|
||
*/
|
||
void step(std::vector<RealD>& lmd,
|
||
std::vector<RealD>& lme,
|
||
std::vector<Field>& evec,
|
||
Field& w,int Nm,int k)
|
||
{
|
||
const RealD tiny = 1.0e-20;
|
||
assert( k< Nm );
|
||
|
||
_poly(_Linop,evec[k],w); // 3. wk:=Avk−βkv_{k−1}
|
||
|
||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||
|
||
ComplexD zalph = innerProduct(evec[k],w); // 4. αk:=(wk,vk)
|
||
RealD alph = real(zalph);
|
||
|
||
w = w - alph * evec[k];// 5. wk:=wk−αkvk
|
||
|
||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||
// 7. vk+1 := wk/βk+1
|
||
|
||
lmd[k] = alph;
|
||
lme[k] = beta;
|
||
|
||
if ( k > 0 ) orthogonalize(w,evec,k); // orthonormalise
|
||
if ( k < Nm-1) evec[k+1] = w;
|
||
|
||
if ( beta < tiny ) std::cout << GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||
}
|
||
|
||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||
int Nk, int Nm,
|
||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||
GridBase *grid)
|
||
{
|
||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||
|
||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||
|
||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||
|
||
for (int i = 0; i < Nk; i++) {
|
||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||
}
|
||
for (int i = 0; i < Nk; i++) {
|
||
for (int j = 0; j < Nk; j++) {
|
||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||
}
|
||
}
|
||
}
|
||
///////////////////////////////////////////////////////////////////////////
|
||
// File could end here if settle on Eigen ???
|
||
///////////////////////////////////////////////////////////////////////////
|
||
|
||
void qr_decomp(std::vector<RealD>& lmd, // Nm
|
||
std::vector<RealD>& lme, // Nm
|
||
int Nk, int Nm, // Nk, Nm
|
||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||
RealD Dsh, int kmin, int kmax)
|
||
{
|
||
int k = kmin-1;
|
||
RealD x;
|
||
|
||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||
RealD s = -lme[k] *Fden;
|
||
|
||
RealD tmpa1 = lmd[k];
|
||
RealD tmpa2 = lmd[k+1];
|
||
RealD tmpb = lme[k];
|
||
|
||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||
x =-s*lme[k+1];
|
||
lme[k+1] = c*lme[k+1];
|
||
|
||
for(int i=0; i<Nk; ++i){
|
||
RealD Qtmp1 = Qt(k,i);
|
||
RealD Qtmp2 = Qt(k+1,i);
|
||
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
|
||
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
|
||
}
|
||
|
||
// Givens transformations
|
||
for(int k = kmin; k < kmax-1; ++k){
|
||
|
||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||
RealD c = lme[k-1]*Fden;
|
||
RealD s = - x*Fden;
|
||
|
||
RealD tmpa1 = lmd[k];
|
||
RealD tmpa2 = lmd[k+1];
|
||
RealD tmpb = lme[k];
|
||
|
||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||
lme[k-1] = c*lme[k-1] -s*x;
|
||
|
||
if(k != kmax-2){
|
||
x = -s*lme[k+1];
|
||
lme[k+1] = c*lme[k+1];
|
||
}
|
||
|
||
for(int i=0; i<Nk; ++i){
|
||
RealD Qtmp1 = Qt(k,i);
|
||
RealD Qtmp2 = Qt(k+1,i);
|
||
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
|
||
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
|
||
}
|
||
}
|
||
}
|
||
|
||
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||
int Nk, int Nm,
|
||
Eigen::MatrixXd & Qt,
|
||
GridBase *grid)
|
||
{
|
||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
|
||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
|
||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||
} else {
|
||
assert(0);
|
||
}
|
||
}
|
||
|
||
#ifdef USE_LAPACK
|
||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||
int *m, double *w, double *z, int *ldz, int *isuppz,
|
||
double *work, int *lwork, int *iwork, int *liwork,
|
||
int *info);
|
||
#endif
|
||
|
||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||
std::vector<RealD>& lme,
|
||
int Nk, int Nm,
|
||
Eigen::MatrixXd& Qt,
|
||
GridBase *grid)
|
||
{
|
||
#ifdef USE_LAPACK
|
||
const int size = Nm;
|
||
int NN = Nk;
|
||
double evals_tmp[NN];
|
||
double evec_tmp[NN][NN];
|
||
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
|
||
double DD[NN];
|
||
double EE[NN];
|
||
for (int i = 0; i< NN; i++) {
|
||
for (int j = i - 1; j <= i + 1; j++) {
|
||
if ( j < NN && j >= 0 ) {
|
||
if (i==j) DD[i] = lmd[i];
|
||
if (i==j) evals_tmp[i] = lmd[i];
|
||
if (j==(i-1)) EE[j] = lme[j];
|
||
}
|
||
}
|
||
}
|
||
int evals_found;
|
||
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||
int liwork = 3+NN*10 ;
|
||
int iwork[liwork];
|
||
double work[lwork];
|
||
int isuppz[2*NN];
|
||
char jobz = 'V'; // calculate evals & evecs
|
||
char range = 'I'; // calculate all evals
|
||
// char range = 'A'; // calculate all evals
|
||
char uplo = 'U'; // refer to upper half of original matrix
|
||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||
int ifail[NN];
|
||
int info;
|
||
int total = grid->_Nprocessors;
|
||
int node = grid->_processor;
|
||
int interval = (NN/total)+1;
|
||
double vl = 0.0, vu = 0.0;
|
||
int il = interval*node+1 , iu = interval*(node+1);
|
||
if (iu > NN) iu=NN;
|
||
double tol = 0.0;
|
||
if (1) {
|
||
memset(evals_tmp,0,sizeof(double)*NN);
|
||
if ( il <= NN){
|
||
LAPACK_dstegr(&jobz, &range, &NN,
|
||
(double*)DD, (double*)EE,
|
||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||
&tol, // tolerance
|
||
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
|
||
isuppz,
|
||
work, &lwork, iwork, &liwork,
|
||
&info);
|
||
for (int i = iu-1; i>= il-1; i--){
|
||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||
for (int j = 0; j< NN; j++){
|
||
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
|
||
if (il>1) evec_tmp[i-(il-1)][j]=0.;
|
||
}
|
||
}
|
||
}
|
||
{
|
||
grid->GlobalSumVector(evals_tmp,NN);
|
||
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
|
||
}
|
||
}
|
||
// Safer to sort instead of just reversing it,
|
||
// but the document of the routine says evals are sorted in increasing order.
|
||
// qr gives evals in decreasing order.
|
||
for(int i=0;i<NN;i++){
|
||
lmd [NN-1-i]=evals_tmp[i];
|
||
for(int j=0;j<NN;j++){
|
||
Qt((NN-1-i),j)=evec_tmp[i][j];
|
||
}
|
||
}
|
||
#else
|
||
assert(0);
|
||
#endif
|
||
}
|
||
|
||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||
int Nk, int Nm,
|
||
Eigen::MatrixXd & Qt,
|
||
GridBase *grid)
|
||
{
|
||
int Niter = 100*Nm;
|
||
int kmin = 1;
|
||
int kmax = Nk;
|
||
|
||
// (this should be more sophisticated)
|
||
for(int iter=0; iter<Niter; ++iter){
|
||
|
||
// determination of 2x2 leading submatrix
|
||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||
// (Dsh: shift)
|
||
|
||
// transformation
|
||
qr_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||
|
||
// Convergence criterion (redef of kmin and kamx)
|
||
for(int j=kmax-1; j>= kmin; --j){
|
||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||
if(fabs(lme[j-1])+dds > dds){
|
||
kmax = j+1;
|
||
goto continued;
|
||
}
|
||
}
|
||
Niter = iter;
|
||
return;
|
||
|
||
continued:
|
||
for(int j=0; j<kmax-1; ++j){
|
||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||
if(fabs(lme[j])+dds > dds){
|
||
kmin = j+1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||
abort();
|
||
}
|
||
|
||
};
|
||
}
|
||
#endif
|