1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-05 03:35:55 +01:00
2023-05-26 13:44:41 +01:00

104 lines
3.6 KiB
C++

/*
* Policy classes for the HMC
* Authors: Guido Cossu, David Preti
*/
#ifndef SUN2INDEX_H_H
#define SUN2INDEX_H_H
NAMESPACE_BEGIN(Grid);
/*
* This is an helper class for the HMC
* Should contain only the data for the two index representations
* and the facility to convert from the fundamental -> two index
* The templated parameter TwoIndexSymmetry choses between the
* symmetric and antisymmetric representations
*
* There is an
* enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
* in the SUnTwoIndex.h file
*/
template <int ncolour, TwoIndexSymmetry S, class group_name = GroupName::SU>
class TwoIndexRep {
public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexMatrix LatticeMatrix;
typedef typename GaugeGroupTwoIndex<ncolour, S, group_name>::LatticeTwoIndexField LatticeField;
static const int Dimension = GaugeGroupTwoIndex<ncolour,S,group_name>::Dimension;
static const bool isFundamental = false;
LatticeField U;
explicit TwoIndexRep(GridBase *grid) : U(grid) {}
void update_representation(const LatticeGaugeField &Uin) {
std::cout << GridLogDebug << "Updating TwoIndex representation\n";
// Uin is in the fundamental representation
// get the U in TwoIndexRep
// (U)_{(ij)(lk)} = tr [ adj(e^(ij)) U e^(lk) transpose(U) ]
conformable(U, Uin);
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
Vector<typename GaugeGroup<ncolour,group_name>::Matrix> eij(Dimension);
for (int a = 0; a < Dimension; a++)
GaugeGroupTwoIndex<ncolour, S, group_name>::base(a, eij[a]);
for (int mu = 0; mu < Nd; mu++) {
auto Uin_mu = peekLorentz(Uin, mu);
auto U_mu = peekLorentz(U, mu);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(Uin_mu) * adj(eij[a]) * Uin_mu;
for (int b = 0; b < Dimension; b++)
pokeColour(U_mu, trace(tmp * eij[b]), a, b);
}
pokeLorentz(U, U_mu, mu);
}
}
LatticeGaugeField RtoFundamentalProject(const LatticeField &in,
Real scale = 1.0) const {
LatticeGaugeField out(in.Grid());
out = Zero();
for (int mu = 0; mu < Nd; mu++) {
LatticeColourMatrix out_mu(in.Grid()); // fundamental representation
LatticeMatrix in_mu = peekLorentz(in, mu);
out_mu = Zero();
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector h(in.Grid());
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)
FundamentalLieAlgebraMatrix(h, out_mu); // apply scale only once
pokeLorentz(out, out_mu, mu);
}
return out;
}
private:
void projectOnAlgebra(typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) const {
GaugeGroupTwoIndex<ncolour, S,group_name>::projectOnAlgebra(h_out, in, scale);
}
void FundamentalLieAlgebraMatrix(
typename GaugeGroup<ncolour, group_name>::LatticeAlgebraVector &h,
typename GaugeGroup<ncolour, group_name>::LatticeMatrix &out, Real scale = 1.0) const {
GaugeGroup<ncolour,group_name>::FundamentalLieAlgebraMatrix(h, out, scale);
}
};
typedef TwoIndexRep<Nc, Symmetric, GroupName::SU> TwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::SU> TwoIndexAntiSymmetricRepresentation;
typedef TwoIndexRep<Nc, Symmetric, GroupName::Sp> SpTwoIndexSymmetricRepresentation;
typedef TwoIndexRep<Nc, AntiSymmetric, GroupName::Sp> SpTwoIndexAntiSymmetricRepresentation;
NAMESPACE_END(Grid);
#endif