1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-12 07:00:45 +01:00
Grid/Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Peter Boyle defd814750 Speed up the coarsened matrix matrix evaluation.
It is block project limited.
Could be sped up with calls to Batched GEMM and a data layout change.
2023-12-22 18:07:03 -05:00

468 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef Lattice<CComplex > FineComplexField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
int hermitian;
GridBase * _FineGrid;
GridCartesian * _CoarseGrid;
NonLocalStencilGeometry &geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
std::vector<CoarseMatrix> _A;
std::vector<CoarseMatrix> _Adag;
std::vector<CoarseVector> MultTemporaries;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
void ShiftMatrix(RealD shift)
{
int Nd=_FineGrid->Nd();
Coordinate zero_shift(Nd,0);
for(int p=0;p<geom.npoint;p++){
if ( zero_shift==geom.shifts[p] ) {
_A[p] = _A[p]+shift;
_Adag[p] = _Adag[p]+shift;
}
}
}
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
{
int nfound=0;
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
for(int p=0;p<geom.npoint;p++){
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
// Search for the same relative shift
// Avoids brutal handling of Grid pointers
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
nfound++;
}
}
}
assert(nfound==geom.npoint);
ExchangeCoarseLinks();
}
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
_CoarseGrid(CoarseGrid),
hermitian(1),
Cell(_geom.Depth(),_CoarseGrid),
Stencil(Cell.grids.back(),geom.shifts)
{
{
int npoint = _geom.npoint;
}
_A.resize(geom.npoint,CoarseGrid);
_Adag.resize(geom.npoint,CoarseGrid);
}
void M (const CoarseVector &in, CoarseVector &out)
{
Mult(_A,in,out);
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if ( hermitian ) M(in,out);
else Mult(_Adag,in,out);
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
RealD tmult2=0;
ttot=-usecond();
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
texch-=usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin);
texch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t osites=pin.Grid()->oSites();
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
+ 2.0*osites*sizeof(siteVector)*npoint;
{
tviews-=usecond();
autoView( in_v , pin, AcceleratorRead);
autoView( out_v , pout, AcceleratorWriteDiscard);
autoView( Stencil_v , Stencil, AcceleratorRead);
tviews+=usecond();
// Static and prereserve to keep UVM region live and not resized across multiple calls
ttemps-=usecond();
MultTemporaries.resize(npoint,pin.Grid());
ttemps+=usecond();
std::vector<Aview> AcceleratorViewContainer_h;
std::vector<Vview> AcceleratorVecViewContainer_h;
tviews-=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
}
tviews+=usecond();
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
auto Aview_p = &AcceleratorViewContainer[0];
auto Vview_p = &AcceleratorVecViewContainer[0];
tcopy-=usecond();
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
tcopy+=usecond();
tmult-=usecond();
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int32_t ss = spb/(nbasis*npoint);
int32_t bp = spb%(nbasis*npoint);
int32_t point= bp/nbasis;
int32_t b = bp%nbasis;
auto SE = Stencil_v.GetEntry(point,ss);
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
for(int bb=1;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
}
coalescedWrite(Vview_p[point][ss](b),res);
});
tmult2-=usecond();
accelerator_for(sb, osites*nbasis, Nsimd, {
int ss = sb/nbasis;
int b = sb%nbasis;
auto res = coalescedRead(Vview_p[0][ss](b));
for(int point=1;point<npoint;point++){
res = res + coalescedRead(Vview_p[point][ss](b));
}
coalescedWrite(out_v[ss](b),res);
});
tmult2+=usecond();
tmult+=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h[p].ViewClose();
AcceleratorVecViewContainer_h[p].ViewClose();
}
}
text-=usecond();
out = Cell.Extract(pout);
text+=usecond();
ttot+=usecond();
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
// std::cout << GridLogPerformance<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
void PopulateAdag(void)
{
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
Coordinate bcoor;
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
for(int p=0;p<geom.npoint;p++){
Coordinate scoor = bcoor;
for(int mu=0;mu<bcoor.size();mu++){
int L = CoarseGrid()->GlobalDimensions()[mu];
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
}
// Flip to poke/peekLocalSite and not too bad
auto link = peekSite(_A[p],scoor);
int pp = geom.Reverse(p);
pokeSite(adj(link),_Adag[pp],bcoor);
}
}
}
/////////////////////////////////////////////////////////////
//
// A) Only reduced flops option is to use a padded cell of depth 4
// and apply MpcDagMpc in the padded cell.
//
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
// Cost is 81x more, same as stencil size.
//
// But: can eliminate comms and do as local dirichlet.
//
// Local exchange gauge field once.
// Apply to all vectors, local only computation.
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
//
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
// pad by 2, apply Doe
// pad by 3, apply Deo
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
//
// => almost factor of 10 in setup cost, excluding data rearrangement
//
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
/////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// BFM HDCG style approach: Solve a system of equations to get Aij
//////////////////////////////////////////////////////////
/*
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
*
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
* = \sum_ball e^{iqk.delta} A_ji
*
* Must invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*/
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tphaseBZ=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
std::vector<FineComplexField> phaF(npoint,grid);
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
CoarseVector coarseInner(CoarseGrid());
typedef typename CComplex::scalar_type SComplex;
FineComplexField one(grid); one=SComplex(1.0);
FineComplexField zz(grid); zz = Zero();
tphase=-usecond();
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
CoarseComplexField coor(CoarseGrid());
pha[p]=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha[p] =exp(pha[p]*ci);
blockZAXPY(phaF[p],pha[p],one,zz);
}
tphase+=usecond();
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
tphaseBZ-=usecond();
phaV = phaF[p]*Subspace.subspace[i];
tphaseBZ+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
tproj-=usecond();
blockProjectFast(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha[p]) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
// Only needed if nonhermitian
if ( ! hermitian ) {
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
PopulateAdag();
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
void ExchangeCoarseLinks(void){
for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.ExchangePeriodic(_A[p]);
_Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);